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Abstract

A residuated algebra (RA) is a generalization of a residuated groupoid;
instead of one basic binary operation · with residual operations \, /, it
admits finitely many basic operations, and each n−ary basic operation
is associated with n residual operations. A basic logical system for RAs
was studied in e.g. [6, 8, 16, 15] under the name: Generalized Lambek
Calculus GL. In this paper we study GL and its extensions in the form
of sequent systems. We prove an interpolation property which allows to
replace a substructure of the antecedent structure by a single formula in
a provable sequent. Together with model constructions, based on nuclei
[13], interpolation leads to proofs of Finite Embeddability Property of
different classes of RAs, as e.g. all RAs, distributive lattice-ordered RAs,
boolean RAs, Heyting RAs and double RAs.

1 Introduction

A residuated groupoid is an (ordered) algebra (M, ·, \, /,≤) such that (M,≤) is
a poset, and ·, \, / are binary operations on M , satisfying the residuation law:

a · b ≤ c iff b ≤ a\c iff a ≤ c/b , (1)

for all a, b, c ∈ M . One refers to · as product, and to \ (resp. /) as the right
(resp. left) residual operation for product. (1) implies the monotonicity of
product in both arguments. Actually, product is distributive over (existing)
infinite joins [13].

Instead of single product · one may admit a finite number of finitary opera-
tions o. With each n−ary operation o there are associated n residual operations
o/i, for i = 1, . . . , n, which satisfy the general residuation law:

o(a1, . . . , an) ≤ b iff ai ≤ (o/i)(a1, . . . , ai−1, b, ai+1, . . . , an) , (2)

for all a1, . . . , an, b ∈ M . This leads to the notion of a residuated algebra (RA).
A nullary operation o gives rise to no residual operations. For n = 1, (2) admits

1



the form:
o(a) ≤ b iff a ≤ (o/1)(b) , (3)

which is a kind of Galois correspondence; o/1 is the right adjoint of o. The pair
o, o/1 can be treated as substructural unary modalities [21]. As a consequence
of (2), one easily proves:

o(a1, . . . , ai−1,
∨
j∈J

bj , . . . , an) =
∨
j∈J

o(a1, . . . , ai−1, bj , . . . , an) , (4)

(o/i)(a1, . . . , ai−1,
∧
j∈J

bj , . . . , an) =
∧
j∈J

(o/i)(a1, . . . , ai−1, bj , . . . , an) , (5)

and for ak =
∨
{bj : j ∈ J}, k 6= i,

(o/i)(a1, . . . , ak, . . . , an) =
∧
j∈J

(o/i)(a1, . . . , ak−1, bj , . . . , ai, . . . , an) , (6)

if the infinite joins and meets on the left-hand side exist. Consequently, ba-
sic operations are monotone in each argument, and o/i is monotone in i−th
argument and antitone in every j−th argument, for j 6= i.

An RA with lattice operations ∨,∧ is called a lattice-ordered RA. It is said
to be distributive, if its lattice reduct is distributive. A boolean RA is an RA
with operations ∨,∧,¬ such that the (∨,∧,¬)−reduct is a boolean algebra; the
lower bound is denoted by ⊥ and the upper bound by >. In a similar way we
define a Heyting RA with ∨,∧,→,⊥,> (here → is pseudo-complement, i.e. the
residual operation for ∧). For each case, the lattice (boolean) ordering is the
ordering of the RA.

Lattice-ordered residuated semigroups, also called residuated lattices, are
a basic class of algebras, modelling substructural logics, i.e. logics devoid of
some structural rules (Weakening, Contraction, Exchange) [20, 21, 13]. Famous
substructural logics are Linear Logics and its fragments. In the context of Linear
Logics, one refers to product and its residuals (and their duals) as multiplicatives
and to ∨,∧ as additives . The Lambek calculus is the multiplicative fragment of
Intuitionistic Linear Logic (precisely, we mean system L1, the Lambek calculus
with 1 [9]).

Nonassociative Lambek Calculus NL, introduced by Lambek [18], is the
complete logic of residuated groupoids. Its algebraic form admits sequents α ⇒
β, where α, β are formulas formed out of variables and operation symbols ·, \, /.
The axioms are all sequents α ⇒ α, and the inference rules are: (1) from
α ·β ⇒ γ infer β ⇒ α\γ, and conversely, (2) from α ·β ⇒ γ infer α ⇒ γ/β, and
conversely, (3) from α ⇒ β and β ⇒ γ infer α ⇒ γ. Clearly (3) is a variant of
the cut rule; it cannot be eliminated in this system. Lambek [18] also formulated
a sequential system of NL which admits cut elimination (see section 3); it yields
the decidability of NL. The sequential system admits sequents X ⇒ α such that
α is a formula, and X is a bracketed string (a tree) of formulas.

In [8], it is proved that the consequence relation of NL is decidable in poly-
nomial time. The proof employs an interpolation property of the sequential form
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of NL: if X[Y ] ⇒ α is derivable in NL from a set of assumptions Φ, then there
exists a formula δ such that X[δ] ⇒ α and Y ⇒ δ are derivable in NL from Φ;
furthermore, δ is a subformula of some formula appearing in X[Y ] ⇒ α or Φ.
An analogous (slightly weaker) property of the pure NL has been first proved
by Jäger [14] by induction on cut-free proofs in NL. The proof in [8] is different.
One works with the cut rule (it is necessary for systems with assumptions); first,
a subformula property is proved by model-theoretic tools, then, interpolation
and the polynomial time decision method are obtained by a direct construction.

In [12], this interpolation property is applied to prove Strong Finite Model
Property (SFMP) of NL and NL with additive conjunction ∧. It yields Finite
Embeddability Property (FEP) of the class of residuated groupoids (solving a
problem in [4]). [12] also contains analogous results for NL with lattice op-
erations ∧,∨, satisfying the distributive law; these are common results of M.
Farulewski and the present author. In [10], these methods are applied to prove
that categorial grammars based on NL with distributive lattice operations gen-
erate context-free languages. At the end of the latter paper, there are announced
(without proof) analogous results (due to the present author) for NL with op-
erations of boolean algebra or Heyting algebra and a generalized version of NL
with several product operations.

The present paper elaborates the latter subject in detail. We believe that
the general framework of RAs is interesting for both logic and its applications.
Algebras with several basic multiplicative operations appear in different areas of
logic, e.g. multi-modal logics and abstract algebraic logics. The gaggle theory of
Dunn [11] provides a Kripke-style relational semantics for such logics. Different
variants of the Lambek calculus are widely applied as type change logics for
categorial grammars (see e.g. [2, 7] and the chapters of M. Moortgat and the
present author in [3]). A standard representation of linguistic expressions is
a labeled tree, which can be represented as a term of a formal language with
operations corresponding to vertice labels. These applications are not exploited
here, since this paper focuses on some purely theoretical problems.

We provide a complete proof of FEP of the class of distributive lattice-
ordered RAs (of an arbitrary signature) and a number of related results. In
section 2 we present basic constructions of lattice-ordered RAs: the powerset
construction and the nucleus construction; they modify and extend standard
constructions in the literature (see [19, 1, 13, 12]), but our treatment of the
nucleus construction is slightly different. In section 3 we formulate a sequential
system of Generalized Lambek Calculus GL, a complete logic of RAs, and its
variants with lattice operations FGL and the distributive law DFGL; we also
prove an interpolation lemma for each of these systems. The main result is
proved in section 4; Theorem 1 states that DFGL possesses SFMP (it yields
FEP of the corresponding class of algebras). In remarks, we show that FEP
also holds for the classes of all RAs and all RAs with ∧.

From the point of view of this paper, the move from residuated groupoids to
RAs is not merely a generalization for itself. Besides the applications, mentioned
above, algebras with several basic operations are essential for our treatment of
boolean RAs and Heyting RAs. FEP of these classes is proved in section 5.
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Analogous results are obtained for unital RAs and integral RAs. Since proofs
are similar to those for DFGL, we only discuss the relevant differences and
additions. (Theorem 1 is the only designated theorem of this paper, but it
splits in numerous variants.) At the end, we briefly outline analogous results
for double RAs, i.e. RAs in which some operations satisfy (2) with respect to
≥, not ≤ (here the RA-framework is quite natural, again). As a special case,
we mention algebras of modal logics.

In a forthcoming paper we plan to elaborate on the case of modal algebras
and to handle proof-theoretic decision methods and complexity problems.

Recall that SFMP of a class of algebras K amounts to Finite Model Property
(FMP) of the Horn theory of K. If K is closed under finite products (including
the trivial product, which yields the trivial algebra), then SFMP is equivalent
to FEP: every finite, partial subalgebra of an algebra from K can be embedded
in some finite algebra from K (FEP of K is equivalent to FMP of the universal
theory of K). If a formal system S is strongly complete with respect to K, then
it yields, actually, an axiomatization of the Horn theory of K; hence SFMP of
S with respect to K yields SFMP of K.

2 Residuated algebras

RAs were defined in section 1. By M and M we denote an algebra and its
universe, respectively. σ denotes the signature of an algebra M without resid-
ual operations (a basic algebra) and σr the extended signature with residual
operations. For example, if M = (M,o, o′) is an algebra of signature σ = (1, 2),
then σr = (1, 1, 2, 2, 2), which corresponds to unary operations o, o/1 and bi-
nary operations o′, o′/1, o′/2. The signature may also admit nullary operations
(interpreted as designated elements of M); no residual operations are defined
for them. We need two general constructions of RAs.

The first one leads from an algebra M of signature σ to the powerset algebra
P (M) of signature σr. The universe of P (M) is the powerset P (M). Subsets of
M are denoted by U, V,W (possibly with indices; we omit this remark in what
follows). Elements of M are denoted by a, b, c. Each n−ary operation o of M
determines an operation O in P (M):

O(U1, . . . , Un) = {o(a1, . . . , an) : a1 ∈ U1, . . . , an ∈ Un} . (7)

If n = 0, then O = {o}. For n ≥ 1, the residual operations for O are defined as
follows:

(O/i)(U1, . . . , Un) = {a ∈ M : O(U1, . . . , {a}, . . . , Un) ⊆ Ui} , (8)

for i = 1, . . . , n. It is clear from the context that {a} is the i−th argument
of O/i, and we omit the adjacent arguments Ui−1, Ui+1. Clearly, for n = 1,
O(U) = o[U ] and (O/1)(U) = o−1[U ] (the image and the co-image, respectively,
of U under o). The order is ⊆. We leave to the reader the routine proof of (2).
So, P (M) is an RA. P (M) is a complete lattice of sets, whence a distributive
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lattice. In [16], using a labeled deductive system in the style of [5], it is shown
that every RA can be embedded into some powerset algebra, but this embedding
does not preserve lattice operations.

The second construction leads from an algebra M of signature σ via P (M)
to an algebra of closed subsets of M (an RA of signature σr). An operator
C : P (M) 7→ P (M) is called a closure operator or a nucleus on M, if it satisfies
the following conditions: (C1) U ⊆ C(U), (C2) if U ⊆ V then C(U) ⊆ C(V ),
(C3) C(C(U)) ⊆ C(U), (C4) O(C(U1), . . . , C(Un)) ⊆ C(O(U1, . . . , Un)), for all
U, V, U1, . . . , Un ⊆ M and all non-nullary operations O of P (M). A similar
notion of a closure operator on a monoid is used in constructions of phase-space
models for intuitionistic fragments of Linear Logic [19, 1, 13].

Let C be a closure operator on M. A set U ⊆ M is said to be closed, if
C(U) = U . C[M] denotes the family of C−closed subsets of M . By (C1)-(C3),
C[M] is closed under arbitrary meets, whence it is a complete lattice with order
⊆ (in general, it is not distributive). As a consequence of (2), one gets:

o(a1, . . . , ai−1, (o/i)(a1, . . . , an), . . . , an) ≤ ai , (9)

for any elements and operations of the given RA. We use (9) to show that C[M]
is closed under residual operations O/i.

Lemma 1. For any U1, . . . , Un ⊆ M and any i = 1, . . . , n, if Ui is closed, then
(O/i)(U1, . . . , Un) is closed.

Proof. Operations O are monotone in all arguments. One calculates:

O(U1, . . . , C((O/i)(U1, . . . , Un)), . . . , Un) ⊆

O(C(U1), . . . , C((O/i)(U1, . . . , Un)), . . . , C(Un)) ⊆

C(O(U1, . . . , (O/i)(U1, . . . , Un), . . . , Un)) ⊆ C(Ui) = Ui ,

whence C((O/i)(U1, . . . , Un)) ⊆ (O/i)(U1, . . . , Un).

C[M] is an algebra of signature σr with operations: OC(U1, . . . , Un) =
C(O(U1, . . . , Un)), for n ≥ 0, and OC/i equal to O/i restricted to C[M], for
n ≥ 1, i = 1, . . . , n. It is easy to see that C[M] is an RA. We also define lattice
operations and bounds: U∧V = U∩V , U∨C V = C(U∪V ), ⊥ = C(∅), > = M .
C[M] with these operations and constants is a complete lattice (not necessarily
distributive).

Lemma 2. Let M be an algebra of signature σ, and let C be an operator on
P (M), satisfying (C1)-(C3). Then, C satisfies (C4) if and only if the condition
of Lemma 1 is true for C[M].

Proof. The ‘only if’ part is just Lemma 1. For the ‘if’ part, by induction on
i = 0, . . . , n, we prove:

o(C(U1), . . . , C(Ui), Ui+1, . . . , Un) ⊆ C(o(U1, . . . , Un)) , (10)
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for any U1, . . . , Un ⊆ M , assuming that the condition of Lemma 1 holds. For
i = 0, (10) follows from (C1). Assume that (10) holds for i < n. By (2) for
P (M), we get:

Ui+1 ⊆ (O/i + 1)(C(U1), . . . , C(Ui), C(o(U1, . . . , Un)), Ui+2, . . . , Un) .

The right-hand set is closed, whence the left-hand set can be replaced with
C(Ui+1), by (C2), (C3). We apply (2) for P (M) and obtain (10) for i + 1.

We will use a closure operator determined by a family B of subsets of M .
One defines:

CB(U) =
⋂
{V ∈ B : U ⊆ V } , (11)

for U ⊆ M .
CB satisfies (C1)-(C3), for any family B. Again, the family CB[M] is closed

under arbitrary meets.

Lemma 3. CB satisfies (C4) if and only if, for all non-nullary operations o in
M, all sets V ∈ B and all a1, . . . , an ∈ M , the set (O/i)({a1}, . . . , V, . . . , {an})
is closed, for every i = 1, . . . , n.

Proof. The ‘only if’ part follows from the fact that all sets in B are closed,
applying Lemma 2. The ‘if’ part is a consequence of (5) and (6), applied to
P (M) and Lemma 2.

3 Generalized Lambek Calculus

We present a formal system which proves order formulas α ≤ β valid in RAs.
First, we recall NL as a sequent system [18].

We admit a denumerable set of variables p, q, r, . . .. Formulas are built from
variables by means of ·, \, /. Formula structures (shortly: structures) are built
from formulas according to the rule: if X, Y are structures then (X, Y ) is a
structure. We denote arbitrary formulas by α, β, γ, . . . and structures by X, Y, Z.
Contexts are structures which contain a unique occurrence of a new atomic
substructure ◦; they are denoted X[◦], Y [◦], Z[◦] etc. If X[◦] is a context and Y
is a structure, then X[Y ] denotes the substitution of Y for ◦ in X[◦].

Sequents are of the form X ⇒ α; in models ⇒ is interpreted as ≤. NL
(in the sequential form, due to Lambek [18]) assumes the following axioms and
inference rules:

(Id) α ⇒ α ,

(·L)
X[(α, β)] ⇒ γ

X[α · β] ⇒ γ
, (·R)

X ⇒ α; Y ⇒ β

(X, Y ) ⇒ α · β
,

(\L)
X[β] ⇒ γ; Y ⇒ α

X[(Y, α\β)] ⇒ γ
, (\R)

(α, X) ⇒ β

X ⇒ α\β
,

(/L)
X[β] ⇒ γ; Y ⇒ α

X[(β/α, Y )] ⇒ γ
, (/R)

(X, α) ⇒ β

X ⇒ β/α
,
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(CUT)
X[α] ⇒ β; Y ⇒ α

X[Y ] ⇒ β
.

In Full Nonassociative Lambek Calculus FNL, ·, \, / are enriched with ∧,∨,
and one admits the following rules:

(∧L)
X[αi] ⇒ β

X[α1 ∧ α2] ⇒ β
, (∧R)

X ⇒ α; X ⇒ β

X ⇒ α ∧ β
,

(∨L)
X[α] ⇒ γ; X[β] ⇒ γ

X[α ∨ β] ⇒ γ
, (∨R)

X ⇒ αi

X ⇒ α1 ∨ α2
,

In (∧L) and (∨R), the subscript i equals 1 or 2. The latter rules and (·L),
(\R), (/R) have one premise; the remaining rules have two premises, separated
by semicolon.

Generalized Lambek Calculus GL replaces ·, \, / with operation symbols
o, o/i from a signature σr. (So, it is more correct to write GLσ, but the subscript
will be omitted.) The notion of a formula is defined in a natural way. The
algebraic form of GL admits sequents of the form α ⇒ β. The axioms are
all sequents α ⇒ α. The inference rules are: (1) from o(α1, . . . , αn) ⇒ α
infer αi ⇒ (o/i)(−), and conversely, for i = 1, . . . , n, where (−) stands for the
sequence (α1, . . . , αn) in which αi has been replaced by α, (2) from α ⇒ β and
β ⇒ γ infer α ⇒ γ.

We need a sequential system for GL. Formula structures employ a structure
constructor (−, . . . ,−)o, for any operation symbol o. The recursive definition is
as follows: (i) all formulas are structures, (ii) if o is an n−ary operation symbol
(n ≥ 0) and X1, . . . , Xn are structures, then (X1, . . . , Xn)o is a structure. Notice
that we admit the ‘empty’ structure ()o, for any nullary operation symbol o. The
axioms of GL are (Id). The rules are natural counterparts of the rules of NL:

(oL)
X[(α1, . . . , αn)o] ⇒ γ

X[o(α1, . . . , αn)] ⇒ γ
,

(oR)
X1 ⇒ α1; . . . ; Xn ⇒ αn

(X1, . . . , Xn)o ⇒ o(α1, . . . , αn)
,

(o/iL)
X[αi] ⇒ γ; Y1 ⇒ α1; . . . ; Yn ⇒ αn

X[(Y1, . . . , (o/i)(α1, . . . , αn), . . . , Yn)o] ⇒ γ
,

(o/iR)
(α1, . . . , X, . . . , αn)o ⇒ αi

X ⇒ (o/i)(α1, . . . , αn)
.

The system contains (CUT). Rules (oL), (oR) are also admitted for nullary
operation symbols o; then, (oR) is actually an axiom ()o ⇒ o. Rules ((o/iL),
(o/iR) are admitted for non-nullary operation symbols only. In (o/iL), the
sequent Yi ⇒ αi does not appear among premises. In the premise of (o/iR), X
is the i−th constituent of (−, . . . ,−)o.

Full Generalized Lambek Calculus FGL admits ∧,∨, and the rules for them
are as above. Clearly NL (resp. FNL) equals GL (resp. FGL) with σ = (2).
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Both GL and FGL admit cut elimination. For NL, the proof was already in
Lambek [18]; the proof for GL is similar and can be adapted to FGL (also see
[20, 13]).

It is easy to prove that GL (resp. FGL) is strongly complete with respect to
(resp. lattice-ordered) RAs. We recall some basic notions. An assignment in an
RA M is a homomorphism from the formula algebra into M. An assignment µ
can be defined on formula structures: µ(X) = µ(F (X)), where F (X) arises from
X, after one has successively replaced every substructure (X1, . . . , Xn)o by the
formula o(F (X1), . . . , F (Xn)); in particular, ()o is replaced by o, if o is nullary.
A sequent X ⇒ α is true in the model (M, µ), if µ(X) ≤ µ(α). Let Φ be a set of
sequents. Sequents in Φ will be treated as assumptions. Since (X1, . . . , Xn)o ⇒
α is deductively equivalent to o(F (X1), . . . , F (Xn)) ⇒ α, then we assume that
every sequent from Φ is of the form α ⇒ β (such sequents are said to be simple).
Φ ` X ⇒ α means: X ⇒ α is provable in the calculus (indicated by the context)
from the set of assumptions Φ. The strong completeness means the following:
Φ ` X ⇒ α in GL if and only if, for any model (M, µ), if all sequents from Φ
are true, then X ⇒ α is true. Here M ranges over RAs. For FGL, an analogous
equivalence is true, with M ranging over lattice-ordered RAs.

We are concerned with FGL enriched with the distributive law for lattice
operations. It is added as a new axiom:

(D) α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ)

for all formulas α, β, γ. Notice that the converse sequent is provable in FGL (it
is true in every lattice). The resulting system is denoted DFGL. This system
is strongly complete with respect to distributive lattice-ordered RAs.

(CUT) can be eliminated in FGL but not in DFGL. An equivalent cut-free
system can also be designed, following J.M. Dunn and G. Mints (see [21]), with
a special structure constructor corresponding to ∧. This way, however, leads
to some technical complications. We prefer to admit (CUT). Actually, one of
the most characteristic features of our approach is that we proceed with (CUT)
without lacking effectiveness.

Cut elimination is replaced by interpolation of a particular kind. In a prov-
able sequent X[Y ] ⇒ α, the subtree Y can be replaced by its interpolant δ such
that X[δ] ⇒ α and Y ⇒ δ are provable. Restricted sets of sequents lead to
finite sets of interpolants. This is essential in our proofs of FEP of distributive
lattice-ordered RAs and other classes. It also plays a crucial role in proof-
theoretic decision procedures for DFGL and its variants with assumptions (we
briefly comment on them at the end of the next section).

We prove our first interpolation lemma. Φ denotes a set of assumptions. Let
T denote a set of formulas. By a T−sequent we mean a sequent such that all
formulas occurring in it belong to T . We write Φ `T X ⇒ α if X ⇒ α has
a deduction from Φ (in the given calculus) which consists of T−sequents only
(called a T−deduction).

Lemma 4. Let T be closed under ∧,∨. Let Φ `T X[Y ] ⇒ γ in DFGL. Then,
there exists δ ∈ T such that Φ `T X[δ] ⇒ γ and Φ `T Y ⇒ δ in DFGL.
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Proof. The proof proceeds by induction on T−deductions of X[Y ] ⇒ γ from Φ.
The case of axioms and assumptions is easy; they are simple sequents α ⇒ γ,
so Y = α and δ = α.

Let X[Y ] ⇒ γ be the conclusion of a rule. (CUT) is easy. If Y comes from
one premise of (CUT), then we take an interpolant from this premise. Otherwise
Y must contain Z, where the premises are X[α] ⇒ γ, Z ⇒ α. So, Y = U [Z],
and it comes from U [α] in the first premise. Then, an interpolant δ of U [α] in
this premise is also an interpolant of Y in the conclusion, by (CUT).

Let us consider other rules. First, we assume that Y does not contain the
formula, introduced by the rule (the active formula). If Y comes from exactly
one premise of the rule, then one takes an interpolant from this premise. Let
us consider (∧R). The premises are X[Y ] ⇒ α, X[Y ] ⇒ β, and the conclusion
is X[Y ] ⇒ α ∧ β. By the induction hypothesis, there are interpolants δ of Y
in the first premise and δ′ of Y in the second one. We have Φ `T X[δ] ⇒ α,
Φ `T X[δ′] ⇒ β, Φ `T Y ⇒ δ, Φ `T Y ⇒ δ′. Then, δ ∧ δ′ is an interpolant
of Y in the conclusion, by (∧L), (∧R). Let us consider (∨L). The premises are
X[α][Y ] ⇒ γ, X[β][Y ] ⇒ γ, and the conclusion is X[α ∨ β][Y ] ⇒ γ, where Y
does not contain α∨β. As above, there are interpolants δ, δ′ of Y in the premises.
Again δ∧δ′ is an interpolant of Y in the conclusion, by (∧L), (∨L) and (∧R). For
(oR) with premises Xi ⇒ αi and the conclusion (X1, . . . , Xn)o ⇒ o(α1, . . . , αn),
if Y = (X1, . . . , Xn)o, then we take δ = o(α1, . . . , αn).

Second, we assume that Y contains the active formula (so, the rule must be
an L-rule). If Y is a single formula, then we take δ = Y . Assume that Y is not
a formula. For (oL), (∧L), we take an interpolant of Y ′ in the premise, where
Y ′ is the natural source of Y . For (o/iL) with premises X[αi] ⇒ γ, Yj ⇒ αj ,
for j 6= i, and the conclusion

X[(Y1, . . . , (o/i)(α1, . . . , αn), . . . , Yn)o] ⇒ γ

we consider the source Y ′ of Y (Y ′ occurs in X[αi] and contains αi). Then, Y
arises from Y ′ by substituting (Y1, . . . (o/i)(α1, . . . , αn), . . . , Yn)o for αi. Hence,
an interpolant of Y ′ in the first premise is also an interpolant of Y in the conclu-
sion, by (o/iL). The final case is (∨L) with premises Z[U [α]] ⇒ γ, Z[U [β]] ⇒ γ
and the conclusion Z[U [α ∨ β]] ⇒ γ, where Y = U [α ∨ β]. Let δ be an in-
terpolant of U [α] in the first premise and δ′ be an interpolant of U [β] in the
second premise. Then, δ ∨ δ′ is an interpolant of Y in the conclusion, by (∨L),
(∨R).

Remarks. (1) The axiom (D) plays no role in the above proof, whence
Lemma 4 is true for FGL. (2) For the ∨−free fragment of FGL Lemma 4
remains true except that we assume that T is closed under ∧ only. (3) For GL,
Lemma 4 is true for an arbitrary set T .

Lemma 4 cannot be proved for associative systems. FL can be axiomatized
by adding the following associativity rules to FNL:

(ASS1)
X[((Y1, Y2), Y3)] ⇒ α

X[(Y1, (Y2, Y3))] ⇒ α
(ASS2)

X[(Y1, (Y2, Y3))] ⇒ α

X[((Y1, Y2), Y3)] ⇒ α
.
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(ASS1) introduces a new substructure (Y2, Y3), which does not appear in the
premise. An interpolant of (Y2, Y3) can be δ2 · δ3, where δ2 is an interpolant of
Y2 in the premise, and δ3 is an interpolant of Y3 in X[(δ2, Y3)] → α. This idea,
however, leads to the requirement that T is closed under ·, which is undesirable
for the purposes of the next section (see Lemma 5 and further). Instead of the
above rules, one can add the associative law as the axiom (α·β)·γ ⇒ α·(β·γ) and
the converse one. Then, Lemma 4 remains true (with the same proof), but our
proof of Lemma 7 in the next section requires that the set c(T ) is closed under
all operations which appear in new axioms; if we assume that c(T ) is closed
under ·, then Lemma 5 becomes false, whence the finiteness of the algebra in
Lemma 7 cannot be proved. Of course, any finite collection of instances of the
associative law can be included in Φ without affecting our results.

If Lemma 4 were true for FL, then SFMP of FL could be proved, by methods
of section 4. However, SFMP fails for FL, since the consequence relation for
FL is undecidable. Actually, it is undecidable for the Lambek calculus (even its
/−fragment) [8], and the consequence relation of FL is conservative over that
for the Lambek calculus.

The restriction to T−deductions can be eliminated (in a sense). In the next
section we prove the subformula property : if Φ ` X ⇒ α, then there exists a
T−deduction of X ⇒ α from Φ, for some set T , depending on Φ and X ⇒ α.
As a consequence, we obtain a stronger form of Lemma 4. The proof of the
subformula property applies some model-theoretic tools, which yield FEP for
DFGL.

4 Special models

In this section Φ denotes a fixed finite set of simple sequents. (The finiteness of
Φ is not always essential.) T denotes a set of formulas. Two formulas α and β
are said to be T−equivalent in the calculus S, if Φ `T α ⇒ β and Φ `T β ⇒ α
in S. s(T ) denotes the closure of T under subformulas, i.e. the smallest set of
formulas which contains T and is closed under subformulas. c(T ) denotes the
closure of T under ∧,∨. Clearly c(s(T )) is the smallest set which contains T and
is closed under subformulas and ∧,∨. The following lemma is closely related to
the local finiteness of distributive lattices.

Lemma 5. If T is a finite set of formulas, then c(T ) is finite up to the relation
of c(T )−equivalence in DFGL.

Proof. Let T be finite. Every formula in c(T ) is c(T )−equivalent to a finite
disjunction of finite conjunctions of formulas from T . Omitting repetitions, we
get finitely many formulas of the latter form.

Remark. For the ∨−free fragment of FGL, Lemma 5 remains true, if
one defines c(T ) as the closure of T under ∧. Then, every formula in c(T ) is
c(T )−equivalent to a finite conjunction of formulas from T .

By T ∗ we denote the set of all formula structures formed out from formulas
in T . Similarly, T ∗[◦] denotes the set of all contexts in which any formula
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belongs to T . T ∗ is a (free) algebra (of signature σ) with operations defined
as follows: o(X1, . . . , Xn) = (X1, . . . , Xn)o. Notice that the nullary operation o
is interpreted as the ‘empty’ structure ()o, not the formula o. We consider the
powerset algebra P (T ∗). As shown in section 2, P (T ∗) is a residuated algebra
of signature σr.

We define some subsets of T ∗. For any T−context X[◦] and any α ∈ T , we
define:

[X[◦], α] = {Y ∈ T ∗ : Φ `T X[Y ] ⇒ α in DFGL}, [α] = [◦, α]. (12)

The notation follows [19, 1, 13]. We define B(T ) as the family of all sets
[X[◦], α], for X[◦] ∈ T ∗[◦], α ∈ T . The closure operator CB(T ) is defined as in
section 2.

Lemma 6. CB(T ) satisfies (C4).

Proof. We apply Lemma 3. Let Yj ∈ T ∗, for j = 1, . . . , n, j 6= i, and let
[X[◦], α] ∈ B(T ). We have to show that (O/i)({Y1}. . . . , [X[◦], α], . . . , {Yn})
is closed. Clearly the latter set equals [X[(Y1, . . . , ◦, . . . , Yn)o], α], whence it
belongs to B(T ).

Accordingly, the algebra CB(T )(P (T ∗)) is a complete lattice-ordered RA; this
algebra will be denoted by M(T ).

The following equations are true in M(T ), for any set T , if all formulas
appearing in the equation belong to T . We write C for CB(T ).

OC([α1], . . . , [αn]) = [o(α1, . . . , αn)] , (13)

(O/i)([α1], . . . , [αn]) = [(o/i)(α1, . . . , αn)] , (14)

[α] ∨C [β] = [α ∨ β], [α] ∩ [β] = [α ∧ β] . (15)

We prove (13). To prove (⊆), observe that, if Xi ∈ [αi], i = 1, . . . , n,
then (X1, . . . , Xn)o ∈ [o(α1, . . . , αn)], by (oR). Consequently O([α1], . . . , [αn]) ⊆
[o(α1, . . . , αn)], which yields the desired inclusion, by (C2), since the right-
hand side is a closed set. To prove (⊇), assume that [X[◦], α] ∈ B(T ) contains
O([α1], . . . , [αn]). Since αi ∈ [αi], by (Id), we get (α1, . . . , αn)o ∈ [X[◦], α],
which means Φ `T X[(α1, . . . , αn)o] ⇒ α. We get Φ `T X[o(α1, . . . , αn)] ⇒ α,
by (oL). Using (CUT), one shows [o(α1, . . . , αn)] ⊆ [X[◦], α], which yields the
desired inclusion. Notice that, if o is nullary and o ∈ T , then OC = [o].

We prove (14). To prove (⊆), assume X ∈ (O/i)([α1], . . . , [αn]). Since αj ∈
[αj ], then (α1, . . . , X, . . . , αn)o ∈ [αi]. By (o/iR), X ∈ [(o/i)(α1, . . . , αn)], as
desired. To prove (⊇), assume X ∈ [(o/i)(α1, . . . , αn)]. The following sequent:

(α1, . . . , (o/i)(α1, . . . , αn), . . . , αn)o ⇒ αi

is provable, by (Id), (o/iL) (this is a T−deduction). Hence, by (CUT), for any
Yj ∈ [αj ], j 6= i, the sequent (Y1, . . . , X, . . . , Yn)o ⇒ αi is T−deducible from Φ.
It yields X ∈ (O/i)([α1], . . . , [αn]), as desired.

The proof of (15) is left to the reader (it does not essentially differ from
analogous arguments in [1, 13]).
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Lemma 7. Let T be a nonempty finite set of formulas. Then, M(c(T )) is a
finite distributive lattice-ordered RA.

Proof. We denote T ′ = c(T ). By Lemma 5, there exists a finite set R ⊆ T ′ such
that every formula from T ′ is T ′−equivalent to some formula from R. A set
U ⊆ (T ′)∗ is said to be nontrivial, if U 6= ∅ and U 6= (T ′)∗. We show that, for
any nontrivial closed set U there exists α ∈ R such that U = [α].

Let U be nontrivial and closed and X ∈ U . Let [Z[◦], β] ∈ B(T ′) contain U .
Then Φ `T ′ Z[X] ⇒ β. By Lemma 4, there is δ ∈ T ′ such that Φ `T ′ Z[δ] ⇒ β
and Φ `T ′ X ⇒ δ. Consequently [δ] ⊆ [Z[◦], β], by (CUT), and X ∈ [δ].
Clearly, we may assume δ ∈ R. Let δ1, . . . , δn ∈ R be all formulas obtained in
this way, for a fixed X ∈ U (we have n 6= 0, since U is non-total and closed).
By γX we denote a formula from R which is T ′−equivalent to δ1 ∧ · · · ∧ δn. By
(15) and the definition of C, we obtain:

X ∈ [γX ] ⊆
⋂
{[Z[◦], β] ∈ B(T ) : U ⊆ [Z[◦], β]} = U .

Let α be the disjunction of all formulas γX , for X ∈ U (the disjunction is
nonempty, since U 6= ∅). By (15) and the above, we get U ⊆ [α] ⊆ U , whence
U = [α].

Consequently, the algebra is finite. We prove that its underlying lattice is
distributive. It suffices to prove:

U ∩ (V ∨C W ) ⊆ (U ∩ V ) ∨C (U ∩W ) , (16)

for all closed sets U, V,W . This inclusion is true, if at least one of these sets is
empty or total. So, assume that U, V,W are nontrivial. By the above, there exist
α, β, γ ∈ R such that U = [α], V = [β] and W = [γ]. Accordingly, U ∩(V ∨C W )
equals [α]∩([β]∨C [γ]). By (15), the latter equals [α∧(β∨γ)]. By (D) (restricted
to T ′−sequents) and (CUT), the latter is contained in [(α ∧ β) ∨ (α ∧ γ)]. By
(15), the latter set equals (U ∩ V ) ∨C (U ∩W ).

Remarks. (1) For the ∨−free fragment of FGL, the corresponding lemma
states that M(c(T )) is a finite lattice-ordered RA (it is closed under finite
meets, whence also under finite joins, although the latter are not represented
in the language). The proof is different. We define an equivalence relation ∼
on (T ′)∗: X ∼ Y iff, for any α ∈ T ′, X ∈ [α] iff Y ∈ [α]. By an analogue
of Lemma 5 (see the remark), this relation has a finite index. We show that
every set [Z[◦], α] ∈ B(T ′) is invariant with respect to ∼. Assume X ∈ [Z[◦], α]
and X ∼ Y . Then, Φ `T ′ Z[X] ⇒ α. By Lemma 4, there exists δ ∈ T ′ such
that Φ `T ′ Z[δ] ⇒ α and Φ `T ′ X ⇒ δ. Since X ∼ Y , then Φ `T ′ Y ⇒ δ,
whence Φ `T ′ Z[Y ] ⇒ α, by (CUT). Therefore, Y ∈ [Z[◦], α]. Consequently,
every closed set is invariant with respect to ∼, whence there are only finitely
many closed sets. (2) A similar argument works for GL. Now T ′ = T , and one
proves that M(T ) is a finite RA.

Notice that in the proof of Lemma 7 we must show that (D) is valid in
M(c(T )). The proof employs the fact that c(T ) is closed under all operations,
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appearing in (D), and finite up to c(T )−equivalence. We show below that some
other axioms can be handled in a similar way, but not arbitrary axioms, as e.g.
the asociative law for product (see comments under Lemma 4).

Lemma 8. Let T be a nonempty set of formulas, closed under subformulas. Any
valuation µ in M(T ) such that µ(p) = [p], for all p ∈ T , satisfies µ(α) = [α], for
all α ∈ T . Also, for any T−sequent X ⇒ α, this sequent is true in (M(T ), µ)
if and only if Φ `T X ⇒ α in DFGL.

Proof. The first part can easily be proved by induction on α, using (13), (14),
(15). We prove the second part. Assume that X ⇒ α is a T−sequent true in
(M(T ), µ). Then, µ(F (X)) ⊆ µ(α). By the first part, X ∈ µ(F (X)), whence
X ∈ µ(α) = [α]. Consequently, Φ `T X ⇒ α. Assume Φ `T X ⇒ α. We prove
that X ⇒ α is true in (M(T ).µ), by induction on T−deductions. The axioms
(Id), (D) and the assumptions from Φ, restricted to T−sequents, are of the form
β ⇒ γ such that β, γ ∈ T . By (CUT), [β] ⊆ [γ], whence µ(β) ⊆ µ(γ), by the
first part. All rules of FGL preserve the truth in (M(T ), µ), since M(T ) is a
lattice-ordered RA.

We are ready to prove SFMP of DFGL.

Theorem 1. Assume that Φ ` X ⇒ α does not hold in DFGL. Then, there
exist a finite distributive lattice-ordered RA M and an assignment µ such that
all sequents from Φ are true but X ⇒ α is not true in (M, µ).

Proof. Let T be the set of all formulas appearing in Φ and X ⇒ α. We denote
T ′ = c(s(T )). Since s(T ) is finite, then M(T ′) is a finite distributive lattice-
ordered RA, by Lemma 7. Clearly Φ `T ′ X ⇒ α does not hold in DFGL. Define
µ as in Lemma 8. By this lemma, all sequents from Φ are true in (M(T ′), µ)
but X ⇒ α is not true.

Remarks. (1) Since the class of distributive lattice-ordered RAs is closed
under finite products, SFMP entails FEP of this class. (2) In a similar way,
we prove FEP of the class of meet-semilattice ordered RAs and the class of
RAs; use the above remarks and the fact that Lemma 8 is true for the ∨−free
fragment of FGL and GL (for the latter, T ′ = s(T )).

Now, we can prove a version of the subformula property and a stronger
interpolation lemma for each of this systems.

Corollary 1. If Φ ` X ⇒ α in DFGL, then Φ ⇒T ′ X ⇒ α in DFGL, where
T is the set of formulas appearing in Φ and X ⇒ α and T ′ = c(s(T )).

Proof. Assume Φ ` X ⇒ α. Let µ be defined as in Theorem 1. M(T ′) is a
distributive lattice-ordered RA, and all sequents from Φ are true under µ. By
the strong soundness of DFGL with respect to such algebras, X ⇒ α is true in
(M(T ′), µ). By Lemma 8, Φ `T ′ X ⇒ α.

Remark. For the ∨−free fragment of FGL, an analogous lemma holds with
the same proof except for dropping distribution. For GL, we take T ′ = s(T ).
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Corollary 2. If Φ ` X[Y ] ⇒ α, then there is δ ∈ T ′ such that Φ ` X[δ] ⇒ α
and Φ ` Y ⇒ δ, where T ′ is defined as in Corollary 1.

Proof. We apply Corollary 1 and Lemma 4.

Remarks. (1) Again, the same is true for the ∨−free fragment of FGL
and GL with appropriate modifications of T ′. (2) Both corollaries are true for
FGL, but Lemma 5 fails, whence T ′ cannot be reduced to a finite set. (3) We
leave open whether Theorem 1 holds for FGL.

Corollaries 1 and 2 are essential in proof-theoretic decision procedures for
DFGL and its variants. By these corollaries, every sequent X ⇒ α, derivable
from Φ, possesses a restricted deduction, in which any sequent Y ⇒ δ is of a
very limited form: Y = β or Y = (β1, . . . , βn)o, with δ, β, βi coming from a
finite set R, which depends on Φ and X ⇒ α (see a special case in [8]; further
details will be provided in a forthcoming paper).

5 Extensions

The above results can also be obtained for different extensions of DFGL. In
this section we consider several variants.

First, we add constants ⊥,>, interpreted as the lower bound and the upper
bound of the lattice. The new axioms for them are:

(⊥L) X[⊥] ⇒ α , (>R) X ⇒ > .

The resulting system is strongly complete with respect to bounded dis-
tributive lattice-ordered RAs. (One could introduce ⊥ only and define > =
(o/1)(⊥, . . . ,⊥), for an at least binary operation symbol o, but it is not expedi-
ent for our purposes.)

Lemma 4 remains true. The proof needs new cases for the new axioms (if
T contains the corresponding additive constant). Consider (⊥L) of the form
X[Y ] ⇒ α. If Y contains ⊥, then we take δ = ⊥ as an interpolant of Y ;
otherwise, we take δ = >. Consider (>R) of the form X[Y ] ⇒ >. Then, we
take δ = > as an interpolant of Y .

In the staff of section 4 we assume that c(T ) always contains ⊥,>. Lemma 5
remains true. Lemma 6 goes without changes. In Lemma 7, M(c(T )) is actually
a finite distributive bounded lattice-ordered RA. Now, one easily proves that the
lower bound is C(∅) = [⊥] and the upper bound is (T ′)∗ = [>]. Furthermore,
every closed set equals [α], for some α ∈ T ′, whence one need not consider
nontrivial sets. Lemma 8 remains true.

Therefore, Theorem 1 can be proved for DFGL with ⊥,>. It yields FEP
of the class of bounded distributive lattice-ordered RAs. Corollaries 1 and 2
remain true. Dropping distribution, we obtain variants of these results (see
remarks in section 4).

For some binary operation symbols o, one can introduce units 1o, satisfying
o(1o, a) = a = o(a, 1o). Since 1o is a new nullary operation, our system contains
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the axiom (1oR): ()1o ⇒ 1o and the rule:

(1oL)
X[()1o

] ⇒ α

X[1o] ⇒ α
.

In the metalanguage we assume (()1o
, Y )o = Y = (Y, ()1o

)o. This assumptions
can be formalized by affixing some structural rules, allowing to replace every
substructure Y by (()1o

, Y )o and (Y, ()1o
)o and every substructure of the latter

form by Y .
The resulting system is strongly complete with respect to distributive lattice-

ordered RAs, which are unital with respect to some binary operations o. In
Lemma 4 we assume that T also contains 1o (if 1o occurs in the system), which
is an interpolant of ()1o

in any context. In the staff of section 4 we always assume
that c(T ) contains 1o (if 1o occurs in the system). Then, the algebra M(c(T )) is
unital with respect to the appropriate operations o. First, we have (1o)C = [1o],
as for an arbitrary nullary operation. Let U be a closed set. U equals the meet of
all basic closed sets, containing U . If X ∈ U , then (()1o

, X)o, and consequently
(1o, X)o, belongs to every basic closed set, containing U . By (CUT), O([1o], U)
is contained in every basic closed set, containing U , whence OC([1o], U) ⊆ U .
Let [Z[◦], α] be a basic closed set, containing O([1o], U). Let X ∈ U . We
have (()1o , X)o ∈ [Z[◦], α], whence X ∈ [Z[◦], α]. It yields U ⊆ OC([1o], U), so
U = OC([1o], U). In a similar way one shows U = OC(U, [1o]). Now, all results
of section 4 can be proved with appropriate modifications. Clearly, we can do
both things: add ⊥,> and units 1o, still preserving our results.

For some at least binary operations o, one can add the exchange rules:

(oEXC)
X[(Y1, . . . , Yn)o] ⇒ α

X[(Yπ(1), . . . , Yπ(n))o] ⇒ α
,

for any nontrivial permutation π of {1, . . . , n}. The resulting system is strongly
complete with respect to distributive lattice-ordered RAs, in which the distin-
guished operations are commutative. For a commutative operation o, all residu-
als o/i reduce to o/1, since e.g. (o/2)(a1, . . . , an) equals (o/1)(a2, a1, a3, . . . , an).
For systems with exchange rules, Lemma 4 holds with the same proof (these
rules do not affect interpolants). In algebras M(T ), the distinguished opera-
tions are commutative, since every basic closed set, containing O(U1, . . . , Un),
also contains O(Uπ(1), . . . , Uπ(n)). Then, all results of section 4 can be proved for
systems with exchange rules and the corresponding classes of algebras. In par-
ticular, FEP holds for the class of (distributive lattice-ordered) RAs, in which
some distinguished operations are commutative (also the lattice can be bounded,
the algebras can be unital with respect to some operations).

For systems with ⊥,>, the weakening rules for some distinguished operations
o can be added. They take the form:

(oWEA)
X[Y ] ⇒ α

X[(. . . , Y, . . .)o] ⇒ α
,

where Y is the i-th term in (. . . , Y, . . .)o, and the remaining terms are arbitrary
formula structures. The resulting system is strongly complete with respect to
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(distributive) bounded lattice-ordered RAs such that o(a1, . . . , an) ≤ ai holds,
for the distinguished n−ary operations o and i = 1, . . . , n. This yields 1o = >,
if 1o exists; then, we say that the algebra is integral with respect to o. In the
proof of Lemma 4 (we assume that T contains >), we take > as an interpolant
of any new term, introduced by this rule; an interpolant of any substructure of
the antecedent of the conclusion of (oWEA), containing (. . . , Y, . . .)o equals an
interpolant of Y in the premise. All results of section 4 can easily be proved
for systems with weakening rules and the corresponding classes of algebras. In
particular, FEP holds for the class of bounded (distributive lattice-ordered)
RAs, which are integral with respect to some distinguished operations.

Now, we consider DFGL, enriched with negation ¬, which together with
∧,∨,⊥,> satisfies the laws of boolean algebras. To DFGL with ⊥,> we add
new axioms:

(¬1) α ∧ ¬α ⇒ ⊥ , (¬2) > ⇒ α ∨ ¬α ,

for all formulas α. Clearly the resulting system is strongly complete with respect
to boolean RAs. We denote this system by BGL.

We introduce an auxiliary system S, which amounts to DFGL with ⊥,>
and a designated binary operation o′. We define ¬α = (o′/2)(α,⊥) (the latter
can be written as α → ⊥) and admit axioms (¬1), (¬2) in S. Clearly BGL
is a subsystem of S in the sense that the consequence relation of the former is
contained in the consequence relation in the latter. Actually, Φ ` X ⇒ α holds
in BGL iff it holds in S, provided that all sequents in Φ and X ⇒ α are in
the language of BGL. It follows from the fact that every boolean RA can be
expanded to a model of S: just interpret o′(a, b) = a ∧ b, whence (o′/2)(a, b) =
¬a ∨ b.

The reader may feel the introduction of S as an artificial move, the first one
in this paper. We justify it as follows. In the construction of special models in
the style of section 4, one must define all designated operations on closed sets.
We avoid the nontrivial problem of defining boolean negation ¬U , for a closed
set U ; we simply define it as (O′/2)(U,⊥), as for an arbitrary operation o (here
⊥ stands for the smallest closed set C(∅), which equals [⊥] in M(c(T ))). We
have to show that M(c(T )) satisfies axioms (¬1), (¬2), but they will be treated
similarly as (D).

Axioms (¬1), (¬2) are of the form β ⇒ γ, whence they cause no problem
in the proof of Lemma 4. Accordingly, Lemma 4 is true for S (see above,
for the treatment of (⊥L), (>R)). We define c(T ) as the closure of T ∪ {⊥,>}
under ∧,∨,¬. Clearly Lemma 5 remains true for S (boolean algebras are locally
finite). Precisely, every formula in c(T ) is c(T )−equivalent to a finite disjunction
of finite conjunctions of formulas from T ∪ {⊥,>} and their negations. Lemma
6 goes without changes. We add ¬[α] = [¬α] to equations (15); it holds by
(14) and the fact that ¬[α] = (O′/2)([α], [⊥]). An analogue of Lemma 7 for S
states that M(c(T )) is a finite boolean RA, for any nonempty finite set T . The
proof is as for DFGL with ⊥,>, and one must additionally prove that M(c(T ))
satisfies U ∩¬U ⊆ ⊥ and > ⊆ U ∨C ¬U , for any closed set U . We have already
proven that U = [α], for some α ∈ c(T ). So, the desired inclusions follow from
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the fact that [α∧¬α] ⊆ [⊥] and [>] ⊆ [α∨¬α]. Lemma 8 goes without changes.
This yields an analogue of Theorem 1, i.e. SFMP of S. Since S is conservative
over BGL, we obtain SFMP of BGL, and consequently, FEP of the class of
boolean RAs. Corollaries 1 and 2 for BGL remain true.

Instead of boolean algebras we may consider Heyting algebras, i.e. bounded
lattices with binary operations ∨,∧,→ such that → is the residual operation
for ∧. A Heyting RA is an RA with ∧,∨,→,⊥,> such that the reduct to the
latter operations is a Heyting algebra. HGL is obtained from FGL with ⊥,>
and (CUT) by affixing two rules:

(R1)
α ∧ β ⇒ γ

β ⇒ α → γ
, (R2)

β ⇒ α → γ

α ∧ β ⇒ γ
.

for any formulas α, β, γ. Clearly HGL is strongly complete with respect to the
class of Heyting RAs. Notice that (D) is provable in HGL, but the proof uses
formulas with →.

We introduce an auxiliary system SH. It amounts to DFGL with ⊥,>,
which admits the following axioms, for some designated binary operation symbol
o′:

(H1) o′(α, β) ⇒ α ∧ β , (H2) α ∧ β ⇒ o′(α, β) .

We write α → β for (o′/2)(α, β). (R1) and (R2) are derivable rules of SH,
whence the consequence relation of HGL is contained in that of SH. The latter
is conservative over the former, since every Heyting RA can be expanded to a
model of SH; just define o′(a, b) = a ∧ b.

For SH we proceed as above. Lemma 4 can be proved as for DFGL with
⊥,>. We define c(T ) as the closure of T ∪ {⊥,>} under ∨,∧, o′. Since every
formula from c(T ) is c(T )−equivalent to a finite disjunction of finite conjunctions
of formulas from T ∪ {⊥,>}, then Lemma 5 for SH is true. Lemma 6 goes
without changes. An analogue of Lemma 7 states that M(c(T )) is a finite
Heyting RA, for any nonempty finite set T . This algebra satisfies (H1) and
(H2), by an argument similar to the above for (¬1), (¬2). Lemma 8 goes
without changes. It yields Theorem 1 for SH, i.e. SFMP for SH. Since SH
is conservative over HGL, then we obtain SFMP for HGL, and consequently,
FEP for the class of Heyting RAs.

At the end, we briefly discuss double RAs and their logics.
For any boolean RA and any designated operation o, one can define its De

Morgan dual od:
od(a1, . . . , an) = ¬o(¬a1, . . . ,¬an) , (17)

for all elements a1, . . . , an. One easily shows that od admits residual operations
od/i, for i = 1, . . . , n, with respect to the reverse ordering ≥ such that od/i =
(o/i)d.

A unary operation o can be interpreted as the possibility operation ♦. Since
⊥ ≤ (o/1)(⊥), then o(⊥) ≤ ⊥, by (3), whence o(⊥) = ⊥ holds in any boolean
RA. The dual od can be interpreted as the classical �. In any boolean RA,
o(¬>) ≤ ¬>, then > ≤ ¬o(¬>), whence od(>) = >. For formulas α in the
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language of modal logics, one can show that > ⇒ α is valid in boolean RAs
if and only if α is a theorem of modal logic K. Therefore, K can be faithfully
interpreted in BGL. This interpretation can be extended to other modal logics,
e.g. T, S4. Instead of new axioms, added to BGL, one can add new structural
rules for (−)o. Therefore, our methods provide new proofs of FMP for some
modal logics. We defer a detailed discussion to a forthcoming paper.

A double RA is an algebra M of signature (σr, (σ′)r) and ordering ≤ whose
basic algebra is of signature (σ, σ′), the reduct of M of signature σr is an RA
with respect to ≤, and the reduct of M of signature (σ′)r is an RA with respect
to ≥. By o we denote any operation connected with σ and by ω any operation
connected with σ′. Hence any non-nullary operation ω, satisfies the following
variant of (2):

b ≤ ω(a1, . . . , an) iff (ω/i)(a1, . . . , ai−1, b, ai+1, . . . , an) ≤ ai (18)

for all i = 1, . . . , n and all elements a1, . . . , an, b.
The order formulas α ≤ β valid in double RAs (of a fixed signature) are

derivable in a variant of GL, denoted by GLD. Its algebraic form enriches the
algebraic form of GL by rules corresponding to (18). The sequential form can
be designed as well, but we do not employ it here.

Kurtonina and Moortgat [17] consider a particular system of this kind with
one binary operation o and one binary operation ω (they call it the Lambek-
Grishin calculus). They prove that this system is complete with respect to
Kripke structures (S, Ro, Rω) such that S is a nonempty set and Ro, Rω ⊆ S3.
The operations O, Ω on P (S) are defined as follows:

O(U, V ) = {x ∈ S : (∃y ∈ U)(∃z ∈ V )Ro(x, y, z)} , (19)

Ω(U, V ) = {x ∈ S : (∀y, z ∈ S)( if Rω(x, y, z) then y ∈ U or z ∈ V )} , (20)

for U, V ⊆ S. Clearly Ω is the De Morgan dual of some operation, defined
from Rω according to (19). Since O (resp. Ω) is distributive under infinite
joins (resp. meets) in both arguments, then their residual operations exist and
are uniquely determined; the residuals of Ω are De Morgan duals of those of
O. P (S) with ⊆ and the operations O,O/1, O/2 and Ω, Ω/1, Ω/2 is a double
RA. The completeness proof in [17] yields, actually, the strong completeness
of GLD (with o, ω and their residuals) with respect to double RA’s of this
particular kind. It can easily be adapted to arbitrary signatures with natural
modifications of (19), (20).

Accordingly, GLD is strongly complete with respect to the class of double
RAs in which operations from (σ′)r arise by (17) from some operations satisfying
(2). This yields a faithful interpretation of the consequence relation of GLD
in the consequence relation of BGL. The algebraic version of this result is that
every double RA can be embedded into a boolean RA. It follows that GLD
possesses SFMP, and consequently, FEP holds for the class of double RAs.
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