
Syntactic categories and types:

Ajdukiewicz and modern categorial grammars

Wojciech Buszkowski
Faculty of Mathematics and Computer Science

Adam Mickiewicz University in Poznań

Abstract

This essay confronts Ajdukiewicz’s approach to syntactic categories
with modern categorial grammars, mainly AB-grammars (basic categorial
grammars) and Lambek grammars, i.e. categorial grammars based on
different versions of the Lambek calculus.

1 Introduction and preliminaries

[2] (1935) is the most often cited paper of Kazimierz Ajdukiewicz1. This pa-
per proposes an algorithm for checking the grammatical correctness (syntactic
connexion) of expressions, which is based on a reduction of indices (types) as-
signed to single words. Types indicate semantic categories of expressions: basic
categories correspond to atomic types and functor categories to functor (func-
tional) types. The theory of semantic categories was elaborated by S. Leśniewski
within his systems of the foundations of mathematics [35]. The decomposition
of a (meaningful) compound expression in the functor (an incomplete expres-
sion) and its arguments can be traced back to G. Frege and the concept of a
semantic category to Husserl [25].

In [2] the algorithm is presented in a form appropriate for languages written
in Polish notation. In fact, one of Ajdukiewicz’s goals was to extend Polish
notation (introduced by J. Lukasiewicz for propositional logics) to richer lan-
guages.

Ajdukiewicz’s approach is seen nowadays as an anticipation of categorial
grammars (type grammars); i.e. formal grammars based on type theories. Types
were earlier used by the fathers of modern logic, implicitly by Frege and explic-
itly by B. Russell. Russell’s types are relational (i.e. types of relations), whereas
Ajdukiewicz’s types are functional (i.e. types of functions).

Ajdukiewicz’s type reduction procedure can be treated as a parsing algo-
rithm which checks whether an arbitrary string of symbols (words) is well-
formed (syntactically connected) according to the rules of type-theoretic syntax.

1We refer to Ajdukiewicz’s papers originally published in German and Polish. The quota-
tions, however, are based on their English translations, collected in [4]

1

Ajdukiewicz emphasizes the universality of the method: it can be applied to ar-
bitrary languages, not only to particular logical formalisms. He writes: “We
shall base our work here on the relevant results of Leśniewski, adding on our
part a symbolism, in principle applicable to almost all languages, which makes
it possible to formally define and examine the syntactic connexion of a word
pattern.”

The term ‘semantical category’ was used in [2] (after Husserl and Leśniewski)
in a sense better expressed by ‘syntactic category’, since the categories were
defined with no explicit reference to semantics. In [3] (1960) Ajdukiewicz com-
ments: “The concept of semantical categories must be clearly distinguished from
the concept of syntactical categories. The term ‘semantical category’ was intro-
duced for the first time by Husserl; however, the concept he associated with it
would correspond better to the term ‘syntactical category’. For Husserl pointed
out that the expressions of a language may be classified according to the role
they can play within a sentence. He defined, therefore, his categories from the
syntactical viewpoint.”

The notion of a syntactic category is the central notion discussed in the
present paper. Some authors use the term ‘category’ in the sense of our ‘type’,
but we prefer to discriminate between them: a category is a set of expressions,
and a type is a formal expression (formula). In type logics, i.e. formal logics
underlying type grammars, types play the role of formulae.

Now we will briefly recall the main ideas and notions of the theory of formal
grammars, especially categorial grammars.

Ajdukiewicz’s types are either atomic types, i.e. s (sentence), n (name),
or functor types, i.e. fractions α

β1...βn
; the denominator shows the types of

arguments of the functor (an incomplete expression), and the numerator shows
the type of the complex expression formed out of the functor and the arguments.
They are intended to denote the basic categories and the functor categories,
respectively. In propositional logic every well-formed propositional formula is
of type s, the negation connective of type s

s , and each binary connective of type
s
ss . In first-order logic, every formula is of type s, every term of type n, every
unary predicate symbol of type s

n , every binary predicate symbol of type s
nn ,

every unary function symbol of type n
n , quantifiers ∀,∃ of type s

ns (in languages
without individual constants and function symbols), and so on. In English,
proper nouns are of type n, verb phrases of type s

n , and transitive verb phrases
of type s

nn . For the phrase ‘John likes Mary’, one assigns n to ‘John’ and ‘Mary’
and s

nn to ‘likes’. In Polish notation, the functor ‘likes’ precedes the arguments,
and the phrase is rewritten as ‘likes John Mary’. The corresponding sequence
of types s

nn , n, n reduces to s by applying (an instance of) the reduction rule

(RED)
α

β1 . . . βn
, β1, . . . , βn ⇒ α .

The Ajdukiewicz algorithm recognizes ‘John likes Mary’ as a well-formed sen-
tence. In general, the reduction procedure may involve several applications of
this reduction rule. An expression (i.e. a sequence of words) is syntactically
connected, if the corresponding sequence of types reduces to a single type.

2

It might be said that this reduction procedure was, historically, the first
parsing algorithm, an important method in mathematical linguistics. It is note-
worthy that mathematical linguistics, originated by Noam Chomsky in 1956
(21 years after the publication of [2]) as a formal theory of natural language,
was extensively developed in computer science for applications in programming
languages. Parsing algorithms play a key role in both disciplines.

Bar-Hillel [5] (1953) modified this method towards a direct parsing of ex-
pressions which are not written in prefix notation. The functor types are of the
form α

β1...βm;γ1...γn
; here β1, . . . , βn correspond to the left and γ1, . . . , γn to the

right arguments of the functor. The reduction rule takes the form:

(RED’) β1, . . . , βm,
α

β1 . . . βm; γ1 . . . γn
, γ1, . . . , γn ⇒ α .

For instance, ‘likes’ is assigned type s
n;n , hence ‘John likes Mary’ yields the

sequence n, s
n;n , n, which reduces to s by a single application of (RED’).

Bar-Hillel, Gaifman and Shamir [6] (1960) formulated the first precise defi-
nition of a categorial grammar; these categorial grammars are presently called
basic categorial grammars or AB-grammars (a credit to Ajdukiewicz and Bar-
Hillel). Types are either atomic, or functional, the latter being restricted to
one-argument types α\β (the argument of type α stands to the left of the func-
tor) and β/α (the argument of type α stands to the right of the functor). The
reduction rules are as follows:

(RED\) α, α\β ⇒ α , (RED/) β/α, α⇒ β .

An AB-grammar is formally defined as a triple G = (ΣG, IG, sG) such that ΣG

is a nonempty finite set, IG is a map which assigns a finite set of types to each
element of ΣG, and sG is a designated atomic type. ΣG, IG and sG are called the
lexicon (or: alphabet), the initial (lexical) type assignment and the designated
type, respectively, of G. In examples we write a : α for α ∈ IG(a). The elements
of ΣG are interpreted as words (lexical units) of a natural language; for a formal
language, they are symbols of that language.

Let us note that [6] refers to Lambek [32] (1958) who introduced the slash
notation for types and essentially extended the reduction procedure; see below.

The definition of an AB-grammar, given above, has been commonly adopted
in the literature (sometimes with minor changes, e.g. sG need not be atomic).
The same definition is applicable for type grammars based on richer type logics.
Let us briefly comment on some aspects of the definition.

Ajdukiewicz’s two atomic types, s (sentence) and n (name), are replaced
by an arbitrary, finite set of atomic types. This fully agrees with Ajdukiewicz’s
views. He writes in [2]: “If the concept of syntactic connexion were to be defined
in strict generality, nothing could be decided about the number and kind of basic
semantic and functor categories, since these may vary in different languages.
For the sake of simplicity, however, we shall restrict ourselves (like Leśniewski)
to languages having only two basic semantic categories, that of sentences and
that of names.” Lambek [34] presents a type grammar for English, applying

3

33 atomic types, e.g. π (subject), πk for k = 1, 2, 3 (k−th person subject), s
(statement), s1 (statement in present tense), s2 (statement in past tense), n
(name), n0 (mass noun), n1 (count noun), n2 (plural noun), n̄ (complete noun
phrase), n̄k (k−th person complete noun phrase), and others.

The map IG is allowed to assign finitely many types to one word. This reflects
the syntactic and semantic ambiguity of many words in natural languages. For
instance, ‘can’ is used as a noun and a modal verb. Such homonyms can be
eliminated by introducing different words, say, can1, can2, like in lexicons. This
solution, however, seems problematic for other ambiguities, where a word can
play different syntactic and semantic roles, preserving (essentially) the same
meaning. For instance, (1) ‘and’ is a sentence conjunction in ‘Mary sings and
Mary dances’ and a verb conjunction in ‘Mary sings and dances’, (2) an adverb
can act on intransitive verbs and transitive verbs, (3) adjectives and determiners
(‘some’, ‘no’, ‘the’) can act on singular nouns and plural nouns, and so on. Even
formal languages of logic often require more than one type of one symbol. The
type of quantifiers (s/s)/n (i.e. the one-argument counterpart of s

ns) does not
work for languages with function symbols, since the first argument of a quantifier
must be a variable, not a compound term. We need different atomic types for
variables (n) and compound terms (n′); quantifiers are typed (s/s)/n, but each
unary function symbol has two types: n′/n and n′/n′.

Formal languages of logic usually contain infinitely many symbols, e.g. in-
finitely many variables. The corresponding AB-grammar has an infinite alpha-
bet. For such grammars, the infinite alphabet ΣG can be partitioned in finitely
many disjoint sets Σi such that each symbol from Σi is assigned the same fi-
nite set of types. This generalization has no essential impact on our further
considerations, and we adopt it, while discussing languages of logic. For natu-
ral languages and formal languages of mathematical linguistics we assume the
finiteness of ΣG.

Finite sequences of elements of Σ are called strings on Σ. Σ∗ (resp. Σ+)
denotes the set of all (resp. nonempty) strings on Σ. By ε we denote the empty
string. By a language on Σ we mean an arbitrary set L ⊆ Σ∗. A language L is
said to be ε−free, if ε 6∈ L.

Let G be an AB-grammar. One says that G assigns type α to a string
a1 . . . an, where n > 0 and each ai belongs to ΣG, if for any i = 1, . . . , n there
exists αi ∈ IG(ai) such that the sequence (α1, . . . , αn) reduces to α by a number
of applications of (RED\), (RED/); we write: a1 . . . an :G α. L(G, α) denotes
the set of all u ∈ Σ+

G such that u :G α. The set L(G, sG) is called the language
of G (or: generated by G) and denoted by L(G).

Two grammars are said to be (weakly) equivalent if they generate the same
language; two classes of grammars are equivalent if they generate the same
class of languages (these notions can be applied for grammars of different kinds
provided that L(G) is defined for them). The main mathematical theorem of [6]
states the equivalence of AB-grammars and ε−free context-free grammars. Let
us explain the second notion.

Context-free grammars (CFGs) form one of the four classes of the Chom-
sky hierarchy of formal grammars (the others are regular grammars, context-

4

@
@

@

�
�
�

John likes Mary: S

John: PN
\

\\
�

��

likes Mary: VP

likes: TV Mary: PN

Figure 1: A parse tree in a context-free grammar.

sensitive grammars and general production grammars). A CFG G consists of a
terminal alphabet ΣG, a nonterminal alphabet VG, an initial symbol SG ∈ VG,
and a set of production rules PG ⊂ VG × (ΣG ∪ VG)∗; the sets ΣG, VG, PG are
finite and ΣG ∩ VG = ∅. A production rule (A, u) is written A 7→ u and in-
terpreted as a rewriting rule: rewrite A as u. The language of G, denoted by
L(G), is defined as the set of all strings on ΣG which can be derived from SG

by a finite number of applications of production rules from PG.
A production rule of the form A 7→ ε is called a nullary rule. A CFG G is

said to be ε−free, if PG contains no nullary rule (then, L(G) is certainly ε−free).
A language is said to be context-free, if it is generated by a CFG. Every ε−free
context-free language is generated by some ε−free CFG.

Every ε−free CFG can be transformed into an equivalent CFG in some nor-
mal form. The basic normal form admits only production rules A 7→ B1 . . . Bn,
(n > 0), or A 7→ a (the lexical rules); hereafter the upper-case letters represent
nonterminal symbols and the lower-case letters represent terminal symbols. The
Chomsky normal form is the basic normal form such that n = 2 in each non-
lexical rule. The Greibach normal form (precisely: 2-normal form) admits only
rules of the form A 7→ a, A 7→ aB, and A 7→ aBC.

In a CFG the derivation of a string x from a nonterminal A can be written in
a linear form A⇒ x1 ⇒ · · · ⇒ xn, where n ≥ 0, xn = x, and each ⇒ represents
one application of a production rule. For instance, with the rules S7→ PN VP,
VP7→ TV PN, TV 7→ ’likes’, PN 7→ ‘John’, PN7→ ‘Mary’ one derives: S ⇒ PN
VP ⇒ PN TV PN ⇒ ‘John’ TV PN ⇒ ‘John likes’ PN ⇒ ‘John likes Mary’.
(Here PN, VP and TV are nonterminals representing proper noun, verb phrase
and transitive verb)

The derivation tree corresponding to this linear derivation is depicted in Fig-
ure 1. More precisely, this is a parse tree; the derivation tree omits the terminal
strings in the internal nodes. This tree determines a unique phrase structure
(John (likes Mary)), i.e. a decomposition of the string of words in constituents,
corresponding to subtrees of the tree. One defines the ps-language of G as the
set LP (G) which consists of all phrase structures determined by derivation trees
of strings from L(G). The full parse tree can be encoded by adding nonterminals
to the phrase structure: here (JohnPN (likesTV MaryPN)V P)S .

Every AB-grammar G can easily be transformed into an equivalent CFG G′

5

@
@

@@

�
�

�

John likes Mary: s

John: n
\

\\

�
��

likes Mary: n\s

likes: (n\s)/n Mary: n

Figure 2: A parse tree in an AB-grammar.

in Chomsky normal form. We define: ΣG′ = ΣG, VG′ consists of all subtypes of
the types appearing in G, SG′ = sG, and PG′ consists of all rules β 7→ α(α\β),
for α\β ∈ VG′ , β 7→ (β/α)α, for β/α ∈ VG′ , and all lexical rules α 7→ a, for
α ∈ IG(a). Consequently, every AB-grammar generates some ε−free context-
free language. The converse direction of the equivalence theorem (every ε−free
context-free language is generated by some AB-grammar) is nontrivial. It is
equivalent to the Greibach normal form theorem for CFGs: every ε−free CFG
is equivalent to some CFG in Greibach normal form. The latter theorem has
independently been proved by S. Greibach in 1965.

The parse tree of ‘John likes Mary’ in an AB-grammar is shown in Figure 2.
As above, the tree determines the phrase structure (John (likes Mary)). For AB-
grammars, however, it is natural to distinguish in every compound substructure
the functor and the argument, which yields a functor-argument structure (fa-
structure). The fa-structure for this example is (John (likes Mary)1)2; this
means that (likes Mary) is the functor in (John (likes Mary)), and ‘likes’ is the
functor in (likes Mary).

In general, a compound fa-structure is of the form (X1X2)i, where i = 1
or i = 2 indicates Xi as the functor, and a compound phrase structure is of
the form (X1X2). The precise definition is recursive: (i) all elements of Σ are
fa-structures on Σ, (ii) if X, Y are fa-structures on Σ, then (XY)1 and (XY)2
are fa-structures on Σ. One can represent fa-structures and phrase structures
as trees; see Figure 3.

Here we confine ourselves to one-argument types, but it is not very essential.
Many-argument types of the form, say, β1 . . . βm\α/γ1 . . . γn (a flattened version
of Bar-Hillel’s fractions) might be admitted as well, and the corresponding fa-
structures would be of the form (X1 . . . Xk)i, where 1 ≤ i ≤ k; this means
that Xi is the functor, X1, . . . , Xi−1 are the left arguments, and Xi+1, . . . , Xk

are the right arguments. This approach seems even more natural in many
situations. For instance, sentential connectives ‘and’ ,‘or’ can be assigned type
s\s/s, whereas the one-argument format enforces (s\s)/s and/or s\(s/s), both
artificial. Categorial grammars with many-argument types were considered in
[11, 13, 14]. In fact, these papers admit more general structures and types, which
indicate a syntactic operation acting on the surface level; besides concatenation

6

\
\

\\

�
�

��

c
John (a)

A
A

AA

�
�
��

(f)

likes (f) Mary (a)

A
A

A
A

�
�
�
��

c
John A

AA

�
��c

likes Mary

Figure 3: (John (likes Mary)1)2 and (John (likes Mary)) depicted as trees.

one may regard other operations, e.g. substitution is useful for discontinuous
expressions.

The representation of expressions as fa-structures quite naturally reflects
the fundamental idea of categorial grammars: each compound expression can
be constructed by application of a functor to its argument(s). The particular
form of fa-structures, admitted here, may look strange even for logicians. In
formal languages of logic, functors are usually simple symbols, and their role
is determined by their meaning, e.g. connectives, function symbols, relation
symbols etc. are functors, and variables, individual constants, etc. are not
functors. A standard tree representation of the propositional formula NCpq
has the root N , its daughter C, and p and q as the daughters of C. This
representation, however, is inappropriate for languages with compound functors,
and natural languages belong to this class; e.g. (likes Mary) can be treated as
the compound functor in (John (likes Mary)), (no student) as the compound
functor in ((no student) came), and so on. Our notation for fa-structures seems
clear and economical; other authors use some variants of it, e.g. Kanazawa [27]
writes FA(X, Y) (forward application) for our (XY)1 and BA(X, Y) (backward
application) for our (XY)2.

Y. Bar-Hillel argued that AB-grammars are an ‘analytic’ counterpart of
CFGs; while the latter generate the terminal string of words from the initial
symbol, the former start from a string of words and reduce the corresponding
sequence of types to the designated type. Currently this difference seems less
important; parsing algorithms for both kinds of grammars can be designed in the
bottom-up style and the top-down style; see [24]. The most characteristic feature
distinguishing categorial grammars from production grammars is lexicality : the
grammatical information on the particular language is totally encoded in the
lexical type-assignment, and the processing of compound expressions is based
on some universal rules, independent of the particular language (e.g. (RED\),
(RED/)). This is not the case for production grammars. Typical context-free
production rules are of the form A 7→ B1 . . . Bn, e.g. S 7→NP VP (a sentence
consists of a noun phrase and a verb phrase). A lexicalization of CFGs can
be done through their reduction to the Greibach normal form; the production

7

rule A 7→ aB1 . . . Bn provides information on the syntactic role of a, which
can be expressed by a : (. . . ((A/Bn)/Bn−1)/ · · ·)/B1 in an AB-grammar. AB-
grammars may be regarded as a lexical counterpart of CFGs, more refined and
logically oriented than the Greibach normal form.

The reduction procedure based on (RED\), (RED/) can be replaced by a
richer type logic. The seminal paper in this direction is Lambek [32] (1958),
introducing Syntactic Calculus, nowadays called Lambek Calculus and denoted
by L. It is usually presented as a sequent system; sequents are formal expres-
sions of the form α1, . . . , αn ⇒ α, whose intended meaning is: if u1, . . . , un are
strings of type α1, . . . , αn, respectively, then the concatenation u1 · · ·un is of
type α. In L, types are formed out of atomic types (variables) by means of
three operators (connectives): · (product, fusion, multiplicative conjunction), \
(right multiplicative implication), and / (left multiplicative implication). Some
authors write→ for \ and← for /. Besides the laws equal to (RED\), (RED/),
there are many other laws provable in L, for instance: α\β, β\γ ⇒ α\γ and
α/β, β/γ ⇒ α/γ (composition laws), α ⇒ (β/α)\β and α ⇒ β/(α\β) (type-
raising laws), α⇒ β\(β · α) and α⇒ (α · β)/β (expansion laws).

Many extensions and variants of L play the role of type logics in the modern
literature on categorial grammars. In the logical community these logics are
called substructural logics; their sequent systems lack some structural rules,
appearing in Gentzen-style sequent systems for intuitionistic and classical logic
(exchange, contraction, left and right weakening). Given a type logic L, the
categorial grammars based on L are referred to as L−grammars. They are
defined like AB-grammars except that one may admit a larger set of types
and the provability in L replaces the former reduction procedure. In fact, this
procedure is equivalent to a subsystem of L, denoted by AB. (So AB-grammars
are the type grammars based on AB.)

Substructural logics enjoy a still growing attention of contemporary logi-
cians, since they seem to play a fundamental role in the family of nonclassical
logics. From the algebraic point of view, they are logics of residuation: impli-
cation(s) is (are) treated as residual operation(s) for product. Many important
nonclassical logics, e.g. Lukasiewicz’s many-valued logics, Hajek’s fuzzy logics,
some relevant logics, intuitionistic logic, linear logics, can be presented as ax-
iomatic extensions of Full Lambek Calculus (FL), i.e. Lambek Calculus with
lattice connectives ∧,∨ and constants 1, 0. Type logics of categorial grammars
are usually restricted to the basic logics of this family: AB, L, FL and their
variants.

In the present paper we cannot present many highly interesting aspects of
type logics, such as their algebras, different proof systems, relations to other
nonclassical logics, complexity, and others. The reader is referred to [23] (a
recent monograph on substructural logics), and the author’s survey papers [16,
18]; also see Moortgat [38, 39].

Another characteristic feature of categorial grammars is their close relation
to type-theoretic semantics. The semantical interpretation of Ajdukiewicz’s ap-
proach was proposed by Bocheński [9], and Ajdukiewicz adopted it in [3]. The
reduction procedure of AB-grammars can be reflected in semantics as the com-

8

putation of meanings (denotations) by function application as the only compu-
tation rule; richer type logics involve lambda abstraction. The Curry-Howard
isomorphism provides a correspondence between logical proofs in the natural
deduction format and logical forms of expressions, usually represented by typed
lambda-terms, which determine the denotations of these expressions, if inter-
preted in a particular model.

In this short paper we cannot thoroughly discuss type-theoretic semantics,
which is today a large, advanced discipline, developed in different directions. We
focus on syntax and only briefly outline some interrelations with semantics. For
more information on type-theoretic semantics the reader is referred to Montague
[37] and further developments in e.g. [30, 7, 42].

The further contents are divided into two sections. In Section 2 we consider
AB-grammars: the relation of typed categories to categories as substitution
classes, some basic properties of structure languages generated by these gram-
mars, and others. Section 3 is concerned with syntactic categories in Lambek
categorial grammars; we emphasize essential differences in comparison with the
AB-framework. Although we focus on basic philosophical ideas, we employ
some mathematical notions, needed for explication of these ideas. For AB-
grammars, these are mainly free algebras of fa-structures and some congruences
in them. Lambek grammars require some elements of proof theory and residu-
ated algebras. All linguistic examples are simple; they merely illustrate general
principles. Fine linguistic applications are provided in [40, 39, 34].

This essay often refers to earlier publications of the author and others.
Especially the author’s book [14] (1989), in Polish, extensively discussed the
foundations of AB-grammars and L-grammars. A formal reconstruction of Aj-
dukiewicz’s ideas can be found in the book [50] of U. Wybraniec-Skardowska.
Our approach is more general ([50] is confined to one-valued grammars for lan-
guages in prefix notation) and regards more concepts, central for the subject-
matter; on the other hand, we do not take into account the distinction between
expressions (types) as tokens and expressions (types) as types, elaborated in [50].
A recent philosophical discussion of the basic properties of categorial grammars,
mainly AB-grammars, can be found in [46]. In this paper we briefly recall some
earlier results (without proofs), but our main concerns are different: we confront
Ajdukiewicz’s approach to syntactic categories with later developments and try
to point out main similarities and differences.

Type-theoretic syntax and semantics were studied by many other authors
(in Poland, by R. Suszko [45], A. Nowaczyk [41], and others). These works
were primarily concerned with formal languages; especially the construction of
higher-order logical languages and their models. Here we focus on categorial
grammars appropriate for the description of natural languages.

Not all problems posed by Ajdukiewicz in [2, 3] are touched on here. For ex-
ample, we do not discuss the distinction between functors and (variable binding)
operators, though we apply Ajdukiewicz’s types with | in a different context.

9

2 Syntactic categories in AB-grammars

One of the basic intuitions of the theory syntactic categories is the principle of
substitution: two expressions belong to the same category, if they can be sub-
stituted for each other in sentential contexts. This principle, admitted by Aj-
dukiewicz after Husserl (who wrote ‘meaningful’ for ‘sentential’) and Leśniewski,
can be explicated in different ways.

In [1], Ajdukiewicz writes: “expressions A and B, taken in sense a and b
respectively, belong to the same semantical category if and only if every sentence
ZA containing expression A in sense a upon replacement of A by B taken in sense
b (the meaning of all other expressions and their interconnections remaining
unaltered) is transformed into an expression which is also a sentence, and if
vice versa: every sentence ZB upon replacement of B by A (with analogous
qualifications) is also transformed into a sentence.”

A similar, but not identical formulation appears in [2]. “The word or expres-
sion A, taken in sense x, and the word or expression B, taken in sense y, belong
to the same semantic category if and only if there is a sentence (or sentential
function) SA, in which A occurs with meaning x, and which has the property
that if SA is transformed into SB upon replacing A by B (with meaning y),
then SB is also a sentence (or sentential function). (It is understood that in this
process the other words and the structure of SA remain the same.)”

Our further discussion will focus on these two versions of the principle of
substitution. The striking difference between them is the universal quantifica-
tion ‘every sentence ZA’ in the former and the existential quantification ‘there
is a sentence’ in the latter. Furthermore, it is not obvious that the equivalence
classes of the relation defined as in the first version coincide with the typed
categories, corresponding to different types. We show that both formulations
are compatible with the theory of AB-grammars, if interpreted in a proper way.

In both versions A and B belong to the same category if and only if they
are mutually substitutable in sentences (sentential functions). It follows that
the categories are determined by some set L of sentences; for languages of logic,
sentences should be replaced by formulae (i.e. propositional functions).

Both versions assume that the replacement of A by B preserves the sentence
structure (in the first version: the interconnections of all other expressions).
It follows that sentences are treated as structured expressions, for instance,
phrase structures or fa-structures rather than strings of words. Let us discuss
the matter more formally.

In mathematical linguistics, for a language L ⊆ Σ∗ one defines the syntactic
congruence determined by L as follows:

u ≡L v ⇔ ∀w1,w2∈Σ∗(w1uw2 ∈ L⇔ w1vw2 ∈ L) ,

for u, v ∈ Σ∗. The relation ≡L is a congruence in the free monoid Σ∗ (the
monoid operation is concatenation, and ε is the unit); furthermore, ≡L is the
largest congruence in Σ∗ compatible with L (this means: L is the union of some
family of equivalence classes). Clearly u ≡L v explicates the idea of mutual
substitutability of u and v in the strings from L.

10

By the index of an equivalence relation ≡ one means the cardinality of
the family of the equivalence classes of ≡. It is well known that ≡L is of
finite index if and only if L is a regular language (i.e. accepted by a finite-
state automaton); see [24]. The regular languages are a poor family of formal
languages. The standard languages of logic are not regular. For instance, the
language LPL of propositional logic in Polish notation is not regular; the strings
C, CC, CCC etc. belong to different equivalence classes of ≡LP L

, since e.g.
Cpp ∈ LPL, CCpp 6∈ LPL. On the other hand, one can distinguish only three
natural syntactic categories in LPL: well-formed formulae, negation, binary
connectives (one can add the fourth category: not well-formed expressions).
Consequently even for simple formal languages L, syntactic categories cannot
be defined as the equivalence classes of ≡L.

Following Ajdukiewicz’s suggestion, we consider analogous relations on the
level of structures. By ΣF (resp. ΣP) we denote the set of all fa-structures
(resp. phrase structures) on Σ. Any set L ⊆ ΣF (resp. L ⊆ ΣP) is called
a fa-language (resp. a ps-language). Contexts are structures containing one
occurrence of a special atom (a place for substitution). If X is a context, then
X[Y] denotes the substitution of Y for in X. ΣF [] (resp. ΣP []) denotes the set
of all fa-contexts (resp. ps-contexts) on Σ.

Let L ⊆ ΣF . The relation ≡L on ΣF is defined as follows:

X ≡L Y ⇔ (∀Z ∈ ΣF [])(Z[X] ∈ L⇔ Z[Y] ∈ L) ,

for X, Y ∈ ΣF . (For L ⊆ ΣP , the relation ≡L on ΣP is defined in a similar
way.) ≡L is a congruence in the free algebra ΣF (the operations are (,)1 and
(,)2); furthermore, ≡L is the largest congruence in ΣF compatible with L. The
analogous facts hold for the ps-version. The equivalence classes of ≡L are called
the substitution classes of the fa-language L, and similarly for ps-languages.

It is known that that the ps-languages of CFGs are precisely the ps-languages
L such that ≡L is of finite index (i.e. the regular ps-languages). Warning: for
unrestricted CFGs, one must admit phrase structures of the form (X1 . . . Xn),
for n ≥ 1; our ‘binary’ phrase structures are appropriate for CFGs in Chomsky
normal form.

For AB-grammars the most natural representations of expressions are fa-
structures. They are uniquely determined by proofs in AB, presented as a
natural deduction system (ND-system).

The axioms are:
(Id) α⇒ α

and the inference rules are the elimination rules for \, /:

(E\) Γ⇒ α ; ∆⇒ α\β
Γ, ∆⇒ β

, (E/)
Γ⇒ β/α ; ∆⇒ α

Γ, ∆⇒ β
.

Here Γ and ∆ stand for finite sequences of formulae and ‘Γ, ∆’ denotes the
concatenation of Γ and ∆. (This notation is commonly used in sequent systems.)

Proofs in this system, presented as proof trees, determine fa-structures on
the antecedents of sequents. These are fa-structures on the set of formulae

11

(types); we call them formula structures. They can be made explicit, if one
replaces the conclusion of (E\) by (Γ, ∆)2 ⇒ β and the conclusion of (E/) by
(Γ, ∆)1 ⇒ β. Warning: here Γ and ∆ stand for formula structures, and (Γ, ∆)i

is a compound formula structure whose constituents are Γ and ∆ (in formula
structures we separate the constituents by a comma, just for better readability).

Let G be an AB-grammar. The map IG is extended for all X ∈ ΣF
G by

setting:
IG((XY)i) = {(Γ, ∆)i : Γ ∈ IG(X), ∆ ∈ IG(Y)} .

We say that G assigns type α to X ∈ ΣF
G (write: X :G α), if there is Γ ∈ IG(X)

such that Γ ⇒ α is provable in AB. This definition is compatible with the
procedure of determining fa-structures from parse trees, described in Section 1.

We define TF
G (X) = {α : X :G α}, LF (G, α) = {X ∈ ΣF

G : α ∈ TF
G (X)}.

We also define T (G) =
⋃
{IG(a) : a ∈ ΣG} ∪ {sG} and s(T (G)) as the set of all

subformulae of the formulae (types) from T (G).
Since the conclusions of (E\) and (E/) consist of subformulae of the formulae

occurring in the premises, then TF
G (X) ⊆ s(T (G)) for any X ∈ ΣF

G.
The fa-language LF (G, sG) is called the fa-language generated by G and de-

noted by LF (G). By dropping all functor markers in the structures from LF (G)
one obtains the ps-language of G, denoted by LP (G), and L(G) is obtained
by dropping all structure markers. The set LF (G, α) can be referred to as the
category of type α in G; see the discussion below.

Example 1. Consider the following AB-grammar G. The lexicon consists of
four words: ‘Mary’, ‘is’, ‘very’, ‘apt’. IG is defined by: ‘Mary’: n, ‘is’: (n\s)/a,
‘very’: a/a, ‘apt’: a (so a is the type of adjectives). The designated type is s.
This grammar generates an infinite fa-language, whose first elements are:

(Mary (is apt)1)2
(Mary (is (very apt)1)1)2
(Mary (is (very (very apt)1)1)1)2

The ps-language of G contains the phrase structures (Mary (is apt)), (Mary
(is (very apt))) and so on, and the language of G the strings ‘Mary is apt’,
‘Mary is very apt’ and so on. LF (G, a) contains the fa-structures ‘apt’, (very
apt)1, (very (very apt)1)1 and so on.

We need some notions which intuitively appeal to the tree representation
of fa-structures and phrase structures; see Section 1. We only consider paths
going upwards. An f-path is a path for which all nodes, possibly except the first
one, are marked by (f). The f-degree of L ⊆ ΣF , denoted df (L), is the maximal
length of f-paths in structures from L, if it exists; we set df (∅) = 0, and df (L) =
∞, if the lengths of f-paths are unbounded in L. The following notions are
meaningful for fa-structures, phrase structures and the corresponding languages.
The outer degree of a structure X is the length of the shortest path in X from
the root to a leaf. The degree of X, denoted d(X), is the maximal outer degree
of substructures of X. The degree of L, denoted d(L), is the maximal d(X),
for X ∈ L, if it exists; we set d(∅) = 0 and d(L) = ∞, if {d(X) : X ∈ L} is
unbounded.

12

Example 2. In X depicted in Figure 3, the maximal f-path goes from the
root to ‘likes’ and is of length 2, but d(X) = 1, since the distance of each node
to the closest leaf is at most 1. The f-degree of the fa-language from Example 1
equals 2, but its degree equals 1. df (ΣF) =∞, d(ΣF) =∞, d(ΣP) =∞.

The fa-languages of AB-grammars can be characterized as the fa-languages
L such that ≡L is of finite index and df (L) is finite. This result has been proved
in [11].

We outline the proof in one direction, since it employs some relevant notions.
For an AB-grammar G, the relation ≡F

G on ΣF
G is defined as follows:

X ≡F
G Y ⇔ TF

G (X) = TF
G (Y) ,

for X, Y ∈ ΣF
G. If U, V are sets of types, one defines:

U B V = {β : ∃α(α ∈ U ∧ (α\β) ∈ V)} , U C V = {β : ∃α((β/α) ∈ U ∧α ∈ V)} .

It is easy to show:

TF
G ((XY)1) = TF

G (X) C TF
G (Y) , TF

G ((XY)2) = TF
G (X) B TF

G (Y) ,

for all X, Y ∈ ΣF
G. Consequently X ≡F

G X ′ and Y ≡F
G Y ′ entail (XY)i ≡F

G

(X ′Y ′)i, which means that ≡F
G is a congruence in ΣF

G. It is compatible with
LF (G), since X ∈ LF (G) if and only if sG ∈ TF

G (X). The index of ≡F
G is finite

(at most 2m, where m is the cardinality of s(T (G))). Since ≡F
G⊆≡LF (G) (the

former is a congruence compatible with LF (G), and the latter is the largest
congruence compatible with LF (G)), then every equivalence class of ≡LF (G) is
the union of a family of equivalence classes of ≡F

G. Consequently ≡LF (G) is of
finite index.

To show that df (LF (G)) is finite it is convenient to represent types as fa-
structures on the set of variables: write (αβ)2 for α\β and (αβ)1 for α/β.
Although the new notation looks weird, it is quite helpful; e.g. the degree and
the f-degree of a set of types can be defined as for fa-languages. It is easy to
show that for any AB-grammar G, df (LF (G)) ≤ df (T (G)), and consequently
df (LF (G)) is finite.

The ps-languages of AB-grammars can be characterized as the ps-languages
L such that ≡L is of finite index and d(L) is finite. ΣP is generated by the
CFG with rules S 7→ S S, S 7→ a, for a ∈ Σ, but by no AB-grammar, since
d(ΣP) = ∞. Consequently the ps-languages of AB-grammars are a proper
subclass of the ps-languages of CFGs (in Chomsky normal form). One can
say that AB-grammars are not strongly equivalent (precisely: P-equivalent) to
CFGs, although the (weak) equivalence holds.

We return to the main issue of this section: the relation of categories as
substitution classes to typed categories. For an AB-grammar G, the former
can be identified with the substitution classes of LF (G) and the latter with the
sets LF (G, α). Take note that for α 6∈ s(T (G)), LF (G, α) = ∅. Although both
families are finite, they are different in general.

We have shown that the relation ≡F
G is always finer than (or equal to) the

relation ≡LF (G). An AB-grammar G is said to be well-constructed, if it satisfies

13

the following conditions: (WC.1) ≡LF (G)=≡F
G, (WC.2) for any α ∈ s(T (G)),

LF (G, α) 6= ∅.
(WC.1) requires that each substitution class of LF (G) consists of all struc-

tures which are assigned the same set of types in G. (WC.2) additionally requires
that G employs no ‘void’ type, i.e. a type not assigned to any expression.

For L ⊆ ΣF , by s(L) we denote the set of all substructures of the structures
from L. For any L ⊆ ΣF , if s(L) 6= ΣF , then ΣF − s(L) is a single substitution
class of L. This class consists of not well-formed expressions with respect to
L and is denoted by non(L) (the class of nonsense). Notice that for any AB-
grammar G, s(LF (G)) 6= ΣF

G, since df (ΣF
G) = ∞, but df (s(LF (G))) is finite

(equals df (LF (G))). Consequently non(LF (G)) is defined.
It follows from (WC.1) that X belongs to non(LF (G)) if and only if TF

G (X) =
∅. The implication (⇐) is obvious. For (⇒), observe that non(LF (G)) must
contain a structure Y such that TF

G (Y) = ∅, since the f-degree of non(LF (G))
is infinite, but the union of all typed categories in G has a finite f-degree. Thus,
for any X in non(LF (G)), we have X ≡LF (G) Y , hence X ≡F

G Y , by (WC.1),
which yields TF

G (X) = ∅.
Example 3. We present some examples of grammars which are not well-

constructed. G1 assigns s/(p/q) to a and p/q to b, ΣG1 = {a, b}, sG1 = s.
Then, LF (G1) = {(ab)1}, (WC.1) holds, but (WC.2) fails, since LF (G, q) = ∅.
G2 assigns s/p and s/q to a, p to b, and q to c, ΣG2 = {a, b, c}, sG2 = s. Then,
LF (G2) = {(ab)1, (ac)1}, (WC.2) holds, but (WC.1) fails: b and c belong to the
same substitution class, but TF

G2
(b) 6= TF

G2
(c).

These examples are artificial. If one designs an AB-grammar for a formal
language or (a fragment of) a natural language, then one usually obtains a
well-constructed grammar. In [11] it is proved that every AB-grammar G is
F-equivalent to a well-constructed AB-grammar G′, where the F-equivalence
means: LF (G) = LF (G′) ([11] uses ‘adequate’ for ‘well-constructed’). We skip
the proof. We only note that the atomic types in G′, different from sG′ , are in
a one-one correspondence with the substitution classes of LF (G), different from
the nonsense class, and sG′ is assigned to the structures from LF (G).

[13] provides an effective construction of G′ from G. One uses the powerset
algebra P(s(T (G))) with operations B,C. The subalgebra A(G) of this algebra,
generated by the set {IG(a) : a ∈ ΣG}, is isomorphic to the quotient-algebra
ΣF

G/ ≡F
G; the isomorphism is defined by h([X]≡) = TF

G (X). A(G) is a finite
algebra, effectively constructed from G. The elements of A(G), i.e. certain sets
of types, represent the structures from ΣF

G up to ≡F
G.

By this method, G1 from Example 3 is transformed into the well-constructed
grammar a : s/p, b : p, and G2 to a : s/p, b : p , c : p.

The well-constructed grammars attain the closest concord between the sub-
stitution classes of the generated fa-language and the typed categories of the
grammar, which is possible for the general case. Since one expression can be as-
signed several types, typed categories may overlap, hence they do not partition
the universe. Every well-constructed AB-grammar G satisfies the following.

(S-T) Every typed category L(G, α), for α ∈ s(T (G)), is the union of a

14

nonempty family of substitution classes of LF (G) which are contained in
s(LF (G)). Every substitution class of LF (G), different from non(LF (G)),
is the intersection of a nonempty family of typed categories.

We show that the perfect concordance can be reached for one-valued gram-
mars. An AB-grammar is said to be one-valued (or: rigid), if IG(a) contains
at most one type, for any a ∈ ΣG. Less formally, a one-valued AB-grammar
assigns at most one type to each word.

By G1 we denote the class of one-valued AB-grammars. If G ∈ G1, then
every X ∈ ΣF

G is assigned at most one type. So X ≡F
G Y if and only if X and

Y are assigned either the same type, or no type in G. If X is assigned a type
in G, then each substructure of X is assigned a unique type.

For G ∈ G1, the relations ≡F
G and ≡LF (G) coincide on s(LF (G)). Nonethe-

less, not every G ∈ G1 is well-constructed.
Example 4. Consider G3 with the alphabet {a, b, c}, sG3 = s, which assigns:

a : s/(p/q), b : p/q, c : q. Then, LF (G3) = {(ab)1}, (WC.2) holds, but (WC.1)
fails, since (bc)1 and c belong to non(LF (G3)), but (bc)1 : p, c : q in G3.

G ∈ G1 is well-constructed if and only if every type from s(T (G)) is assigned
to some X ∈ s(LF (G)) (a strengthening of (WC.2)).

Every G ∈ G1 can be (effectively) transformed into a well-constructed G′ ∈
G1, F-equivalent to G. Furthermore, G′ is unique up to renaming atomic types;
see [11, 13]. This construction is different from the one for arbitrary AB-
grammars. One defines a relation <G on ΣF

G: X <G Y if and only if there
exists Z ∈ s(LF (G)) such that Y is the functor of Z and either X is the ar-
gument of Z or X ≡LF (G) Z (this relation is closely related to the following
relation between types: α < α\β, β < α\β, and similarly for β/α). This re-
lation is invariant with respect to ≡LF (G), hence it yields the quotient relation
<≡

G on ΣF
G/ ≡LF (G), and the latter relation is well-founded (i.e. every nonempty

set of substitution classes has a minimal element). The type assignment of G′

is defined by induction on <≡
G. In particular, the atomic types of G′ correspond

to the minimal substitution classes (one of them is LF (G), and it corresponds
to sG′). Again, the construction can be done effectively, using A(G).

For instance, G3 can be transformed into G4, assigning a : s/p, b : p, c : ∅,
which is well-constructed.

For any well-constructed G ∈ G1, there holds:

(S-T1) every substitution class of LF (G), different from the class of nonsense,
equals some typed category LF (G, α) for a unique α ∈ s(T (G)), and
conversely, every typed category LF (G, α) with α ∈ s(T (G)) equals some
substitution class contained in s(LF (G)).

Every G ∈ G1 satisfies the following conditions:

if Z[X] ∈ s(LF (G)) and Z[X] ≡F
G Z[Y] then X ≡F

G Y , (1)

if X ≡F
G Y then Z[X] ≡F

G Z[Y] , (2)

15

for all X, Y ∈ ΣF
G and Z ∈ ΣF []

G . (1) and (2) express essentially the same as
“the fundamental theorems of the theory of syntactic categories” in Wybraniec-
Skardowska [50]. If G ∈ G1 is well-constructed, then in (1), (2) ≡F

G can be
replaced by ≡LF (G).

Consequently, for any G ∈ G1, we obtain:

∀X,Y ∈s(LF (G))(X ≡LF (G) Y ⇔ ∃
Z∈Σ

F []
G

(Z[X] ∈ LF (G) ∧ Z[Y] ∈ LF (G))) . (3)

We prove (⇒). Assume that X, Y ∈ s(LF (G)) and X ≡LF (G) Y . Then, Z[X] ∈
LF (G), for some context Z. Consequently Z[Y] ∈ LF (G) for the same Z, which
yields the right-hand side of (3). We prove (⇐). Let Z be a context such that
Z[X] ∈ LF (G) and Z[Y] ∈ LF (G). Then, Z[X] :G sG and Z[Y] :G sG, and
consequently Z[X] ≡F

G Z[Y]. By (1), X ≡F
G Y , which yields X ≡LF (G) Y .

(3) shows that the two versions of the principle of substitution are equivalent
for one-valued AB-grammars (if restricted to substructures of sentences). (3)
with L ⊆ ΣF in the place of LF (G) remains true for a wider class of fa-languages.
For instance, the language of combinatory logic satisfies the equivalence, though
it cannot be generated by any one-valued AB-grammar (in the combinatory term
xx two types are needed for x). Tarski [47] regarded the property expressed
by (3) as a characteristic feature of formal languages in mathematics and logic.
Quite likely, in [2] Ajdukiewicz formulated the principle with ‘there is a sentence’
instead of ‘every sentence’ under the influence of Tarski’s view.

The second version of the principle was criticized by some authors as in-
adequate for natural languages. Indeed, in English and probably all natural
languages one can find many examples of expressions which are substitutable
in some but not all contexts, even under the requirement that the substitution
must preserve the sentence structure. For instance, in ‘Mary calls John’ one can
replace ‘John’ by ‘a friend’, which is impossible in ‘Mary calls the old John’; in
‘the teacher examines a student’ one can replace ‘a student’ by ‘two students’,
which is impossible in ‘a student calls the teacher’.

Ajdukiewicz was certainly aware of these problems, when he formulated the
principle in [2] and at the same time claimed the universality of his approach.
This can be explained quite simply. His method is applicable (“in principle”) to
arbitrary languages provided that these languages are reconstructed in the style
of formal languages. Both formulations of the principle of substitution contain
the qualification: A in meaning (sense) a. This makes it possible not only to
treat homonyms as different expressions (like ‘can1’, can2’ in Section 1) but also
to remove all syntactic ambiguities: if a word appears in different contexts with
different types, then one treats the differently typed words as different words.
In this way, every AB-grammar can be transformed into a one-valued grammar:
if IG(a) = {α1, . . . , αn}, then a is replaced by n copies a(1), . . . , a(n) typed
a(i) : αi. The resulting one-valued AB-grammar satisfies (3). If the former
grammar is well-constructed, then the latter grammar is well-constructed.

As we have noted in Section 1, Ajdukiewicz wanted to extend the Lukasiewicz
parenthesis-free notation (Polish notation) for richer languages. For proposi-
tional languages, considered by Lukasiewicz, there is one atomic type s, unary

16

connectives are typed s/s, binary connectives s/ss (or: (s/s)/s), and so on.
Each well-formed string of symbols has a unique type and a unique structure,
and they can be effectively computed from the string if one knows the number
of arguments of each connective. For richer languages, the number of arguments
is not sufficient; one must know the types of all symbols. We will explain the
matter in more detail.

An AB-grammar G is said to be unidirectional, if all types in T (G) are
/−types (resp. \−types), this means, they do not contain \ (resp. /). The
yield of an fa-structure X is the string obtained from X by dropping all struc-
ture markers; the ps-yield of X is obtained by dropping all functor markers.
Unidirectional one-valued AB-grammars are categorially and structurally un-
ambiguous: for any string u ∈ Σ+

G, there is at most one pair (X, α) such that u
is the yield of X and X :G α; see [17].

This also holds for AB-grammars with Ajdukiewicz’s many-argument types
α/β1 . . . βn. It is noteworthy that Ajdukiewicz’s approach in [2] needs some
revision at this point. According to Ajdukiewicz, the reduction procedure can
be performed in a fully deterministic way: at each step one finds the left-most
occurrence of a sequence of types matching the left-hand side of (RED) and
replaces this sequence with the type of the right-hand side of (RED). This de-
terministic algorithm always returns a unique fa-structure and a unique type of
the entry or replies negatively, if it comes to an irreducible sequence. Unfortu-
nately this procedure is incorrect for many-argument types; for one-argument
types it works well. In [17], the following counterexample has been found:

s/(n/n)nn, n/n, n, n/n, n .

This sequence reduces to s, if one reduces the last two types to n, then the whole
to s, but this reduction does not fulfil Ajdukiewicz’s requirement. Following this
requirement, one should first reduce the second and the third type (together) to
n, then the last pair to n, and obtain the irreducible sequence s/(n/n)nn, n, n.
One can consider a formal language, where I : s/(n/n)nn, f : n/n, g : n/n,
a : n, b : n. Let the meaning of Ifab be f(a) = b. The expression Ifagb is
well-formed (it means f(a) = g(b)), but Ajdukiewicz’s procedure rejects it.

This inadequacy can be removed in two ways (see [17]): (i) the reduction
procedure is executed in a non-deterministic way: at any stage one chooses a
reducible pattern of types and rewrites it according to (RED) (this routine is
standard for AB-grammars, but it makes the unambiguity properties nontrivial),
(ii) the reduction procedure remains deterministic but admits partial reductions:

α/β1 . . . βn, β1, . . . , βi ⇒ |α/βi+1 . . . βn .

Types with | can act as functors but not as arguments of other functors. Worth
noticing, in [2] such types are used for languages with variable-binding operators.
For the example mentioned above, one reduces the first three types, which yields
|s/n, n/n, n, then the last pair to n, and finally |s/n, n to s.

Bidirectional one-valued AB-grammars can be both structurally and cate-

17

gorially ambiguous. The sequence of types:

(p/(q\q))/q, q, q\q

reduces to p with structure (((p/(q\q))/q, q)1, q\q)1 and to p/(q\q) with struc-
ture (((p/(q\q))/q), (q, q\q)2)1. The categorial and structural unambiguity, how-
ever, can be retained, if strings are replaced by phrase structures: for any phrase
structure X there exists at most one pair (Y, α) such that Y is an fa-structure,
α is a type, X is the ps-yield of Y , and the grammar assigns α to Y .

Therefore, for unidirectional one-valued AB-grammars one can represent fa-
structures by their yields, and for bidirectional one-valued AB-grammars by
their ps-yields. For any well-constructed unidirectional one-valued grammar G,
the syntactically connected strings are precisely the yields of structures from
s(LF (G)), and the equivalence classes of ≡L(G), restricted to syntactically con-
nected strings, coincide with the typed categories L(G, α), for α ∈ s(T (G)).
The same is true for well-constructed bidirectional one-valued AB-grammars if
one replaces strings by phrase structures and ≡L(G) by ≡LP (G).

Now we briefly discuss the problem of determining basic and functor cate-
gories of the given language, especially a natural language. In practice, many
different aspects play a role, e.g. analogies with logical formalisms, tradition,
semantics, particular features of the language under consideration (a discussion
of various factors can be found in Marciszewski [36]). Semantics justifies the
qualification of sentences and names (proper nouns) as two basic categories.
Intransitive (resp. transitive) verbs are treated like unary (resp. binary) pred-
icates in first-order logic. Complete noun phrases are treated like generalized
quantifiers; they act as functors on unary predicates as arguments. These op-
tions, however, are not obligatory, and there are good reasons for alternative
solutions. Keenan and Faltz [30] admit the basic category of complete noun
phrases, whose subcategory consists of proper nouns; intransitive verbs act as
functors on the complete noun phrases. The reasons are semantical: in [30] the
basic ontological categories, corresponding to the basic syntactic categories, are
boolean algebras with some natural (set-theoretic) interpretations of ‘and’, ‘or’,
‘not’. The ontological category of individuals is not boolean, but that of gen-
eralized quantifiers (i.e. families of sets of individuals) is boolean, and proper
nouns are interpreted as particular families of sets of individuals, namely the
principal ultrafilters in the boolean algebra of all sets of individuals.

Some algorithms which extract a grammar from a finite set of sentences,
represented as fa-structures, were proposed in [13] for one-valued grammars
and [21] for arbitrary AB-grammars. These algorithms employ unification of
types, an adaptation of the Curry algorithm for determining the principal type
of a combinator. Kanazawa [27] further elaborated these methods toward a
Gold-style paradigm of learning as identification in the limit (also for sentences
represented as strings). In the last two decades this issue dominated the math-
ematical research in AB-grammars; see the textbook [39].

Finall, we will discuss semantic types, following Ajdukiewicz [3]. This paper
outlines a semantical version of the approach from [2]. Semantic types corre-
spond to ontological categories of denotations of expressions. Ajdukiewicz uses

18

w as the type of truth values and i as the type of individuals. β
α is the type of

functions which send arguments of type α to values of type β. So w
w corresponds

to unary truth-value functions, w
ww to binary truth-value functions, w

i to unary
predicates, w

ii to binary predicates, and so on. The semantic category of type
α can be defined as the set of expressions whose denotations are of type α. Of
course, this definition assumes that the language is interpreted in a fixed model
which determines the denotations of meaningful expressions. The denotation
of a compound expression can be computed from the denotations of words by
function application.

Today the ideas of [3] are standard in type-theoretic semantics. This pa-
per, however, was published in 1960, several years before the first semantical
work of R. Montague. Nonetheless Ajdukiewicz could be influenced by some
earlier proposals of a similar character, e.g. [9, 45], and higher-order logics, well
elaborated in this time.

Semantic types do not uniquely indicate the syntactic roles of expressions.
For instance, Latin words ‘Johannes’ and ‘Petrum’ are assigned i, but ‘Johannes’
can only be the subject and ‘Petrum’ the direct object of a simple declarative
sentence (so both ‘Johannes amat Petrum’ and ‘Petrum amat Johannes’ express
the same statement, whose functor is ‘amat’, the first argument is ‘Johannes’,
and the second argument is ‘Petrum’). Ajdukiewicz supplies expressions with
positional markers (indices) which indicate the positions of these expressions in
a sentence, represented as a fa-structure with functors always preceding their ar-
guments (so functor markers can be omitted). For ‘Mary sings and Alice dances’
(my example), represented as (and (sings Mary) (dances Alice)), the whole sen-
tence is supplied with 1, the main functor ‘and’ with (1,0), its first argument
(sings Mary) with (1,1), its second argument (dances Alice) with (1,2), ‘sings’
with (1,1,0), ‘Mary’ with (1,1,1), ‘dances’ with (1,2,0), ‘Alice’ with (1,2,1). Aj-
dukiewicz argues that these positional markers are similar to inflections, and
the language in which all words are supplied with such markers is a “purely
inflectional language”.

In this way, Ajdukiewicz attributes to types an exclusively semantical role,
while functor-argument relations are regulated by positional markers. Although
the idea of a purely inflectional language seems attractive, this concrete real-
ization is not satisfactory. Positional markers of words, proposed here, bring
just another encoding of a single fa-structure; they lack sense, if not related
to a particular structure (up to isomorphism), while inflections in inflectional
languages are not restricted to any particular form of sentence. The markers,
given above, are useless for ‘dear Alice sings softly’.

AB-grammars and other type grammars, considered later on, are suitable
for positional languages, as \ and / in directional types α\β, β/α encode the
information on the positions of the functor and the argument and nothing else.
Inflectional languages need more information encoded in types or some addi-
tional syntactic constraints.

To attain a better concordance of syntactic and semantic categories, [14]
proposes a semantics sensitive to syntax. Syntactic types with \, / can be treated
as semantic types. The ontological category of type α\β (resp. β/α) consists of

19

pairs (r, f) (resp. (l, f)) such that f is a function from the ontological category
of type α to that of type β, and r, l are position markers. If (r, f) (resp. (l, f))
is a denotation of X, then X can be interpreted as f , provided that X acts as
the right (resp left) functor in the structure under consideration. In Section 3
we show that also stronger type logics can be related to models of this kind.
Again, this approach works well for (fragments of) positional languages, but
more syntactic information must be encoded in semantic types for inflectional
languages. This way is quite opposite to that of [3].

3 Syntactic categories in Lambek grammars

AB-grammars implicitly assume the following rule: if u : α\β (resp. u : β/α),
then for any string v such that v : α, there holds vu : β (resp. uv : β). Lambek
[32] replaces ‘if-then’ by ‘if and only if’. This leads to new reduction laws. Since
u : α entails uv : β, for any v of type α\β, then u is of type β/(α\β); this
justifies the type-raising law α⇒ β/(α\β) and its dual form α⇒ (β/α)\β has
a symmetric justification. In particular, n⇒ s/(n\s) can be read: every proper
noun is a noun phrase. This type-raising was implicitly applied by Montague [37]
who lifted up proper nouns to the type of noun phrase in order to interpret the
conjunction ‘and’ as a noun phrase conjunction (in models, as the intersection
of families of sets of individuals) in contexts like ‘John and a student’. Also, if
u : α\β and v : β\γ, then wuv : γ, for any w : α, and consequently uv : α\γ.
This justifies the composition law α\β, β\γ ⇒ α\γ, and a similar argument
supports α/β, β/γ ⇒ α/γ. In particular, s/s, s/(n\s) ⇒ s/(n\s) enables the
classification of ‘not every student’ as a (negative) noun phrase.

Lambek’s approach changes the static typing of expressions in AB-grammars
into a dynamic one; each type can be transformed into infinitely many new types.
On the level of syntax, these new types correspond to different syntactic roles
of one expression; in semantics, they yield the types of possible denotations of
the expression.

Two basic versions of the Lambek calculus are Associative Lambek Calculus
(L), due to Lambek [32], and Nonassociative Lambek Calculus (NL), due to
Lambek [33]. In both systems formulae are built from variables (atomic types)
by means of three connectives ·, \, /, called product, right residuation (right
implication, right division) and left residuation (left implication, left division),
respectively. These connectives are interpreted in algebras of languages P(Σ+)
as follows:

L1 · L2 = {uv : u ∈ L1, v ∈ L2} ,

L1\L2 = {u ∈ Σ+ : L1 · {u} ⊆ L2} , L1/L2 = {u ∈ Σ+ : {u} · L2 ⊆ L1} ,

for L1, L2 ⊆ Σ+. Σ+ can be replaced by Σ∗, if one regards languages with ε,
and by ΣP , if one deals with ps-languages (one replaces u by X, v by Y , and
uv by (XY)). These algebras are called language models.

20

General algebraic models are residuated groupoids. A residuated groupoid is
an ordered algebra A = (A, ·, \, /,≤) such that (A,≤) is a partially ordered set,
and ·, \, / are binary operations on A, satisfying the residuation laws:

x · y ≤ z iff y ≤ x\z iff x ≤ z/y ,

for all x, y, z ∈ A. A residuated semigroup is a residuated groupoid such that
· is associative, i.e. (A, ·) is a semigroup. For any residuated groupoid, · is
monotone in both arguments, hence (A, ·,≤) is a partially ordered groupoid.
P(ΣP) is a residuated groupoid (⊆ is the order), and P(Σ+) is a residuated
semigroup.

NL and L can be presented as (intuitionistic) sequent systems. An ND-
system for the product-free L (i.e. L restricted to formulae without ·) adds to
the ND-system for AB the introduction rules:

(I\) α, Γ⇒ β

Γ⇒ α\β
, (I/)

Γ, α⇒ β

Γ⇒ β/α
,

with the constraint Γ 6= ε. Dropping this constraint yields the product-free L∗;
this system admits sequents with empty antecedents.

For NL, antecedents of sequents are formula structures (in the ps-format).
The ND-system for AB is extended by (I\) with the premise (α, Γ) ⇒ β and
(I/) with the premise (Γ, α) ⇒ β. Admitting the empty structure Λ (the unit
of the operation (,)), yields the product-free NL∗.One writes ⇒ α for Λ⇒ α.

In L one adds rules for product:

(E ·) Γ, α, β, Γ′ ⇒ γ ; ∆⇒ α · β
Γ, ∆, Γ′ ⇒ γ

, (I ·) Γ⇒ α ; ∆⇒ β

Γ, ∆⇒ α · β
.

In NL, the first premise of (E ·) is Γ[(α, β)]⇒ γ and the conclusion is Γ[∆]⇒ γ;
the conclusion of (I ·) is (Γ, ∆)⇒ α · β.

In algebraic models, sequents are interpreted as follows. The nonempty
antecedent Γ is interpreted as the formula f(Γ), obtained by replacing each
comma by ·, and ⇒ is interpreted as ≤. The empty antecedent is interpreted
as 1, i.e. the unit element, satisfying 1 · x = x = x · 1, for any element x. The
language {ε} is the unit in language models P(Σ∗). ΣP∗ denotes ΣP ∪ {Λ}
(the empty structure is the unit in ΣP∗). Then, {Λ} is the unit in P(ΣP∗).
A sequent Γ ⇒ α is true in A for a valuation µ (i.e. a homomorphism from
the free algebra of formulae to A), if µ(f(Γ)) ≤ µ(α); it is valid in a class of
algebras, if it is true in every algebra from this class for all valuations.

L is complete with respect to residuated semigroups, this means: the se-
quents provable in L are precisely the sequents valid in this class. L∗ is com-
plete with respect to residuated monoids (i.e. residuated semigroups with 1),
NL with respect to residuated groupoids, and NL∗ with respect to residuated
unital groupoids (i.e. residuated groupoids with 1). In each system, Γ ⇒ α is
provable if and only if f(Γ)⇒ α is provable.

These logics are often presented as sequent systems in which the elimination
rules are replaced by the left introduction rules (they introduce a connective in

21

the antecedent). In NL the left introduction rule for product is: from Γ[(α, β)]⇒
γ infer Γ[α · β]⇒ γ (see [16] for the full list). The cut-rule:

(CUT) in NL
Γ[α]⇒ β ; ∆⇒ α

Γ[∆]⇒ β
(CUT) in L

Γ, α, Γ′ ⇒ β ; ∆⇒ α

Γ, ∆, Γ′ ⇒ β

plays a special role. It is a structural rule (introducing no new formula). It
is necessary in theories (logics augmented with assumptions, i.e. nonlogical
axioms) for their completeness, but not in pure logics: every provable sequent
can be proved without (CUT). This cut-elimination theorem was proved by
Lambek [32] for L and [33] for NL. It also holds for other type logics considered
here. The most important consequences are the decidability of these logics and
the subformula property : every provable sequent Γ⇒ α has a (cut-free) proof in
which all sequents consist of subformulae of the formulae occurring in Γ⇒ α.

Other standard structural rules are exchange (e), integrality (or: left weak-
ening) (i), contraction (c), and associativity (a):

(e)
Γ[(∆1, ∆2)]⇒ α

Γ[(∆2, ∆1)]⇒ α
, (i)

Γ[∆i]⇒ α

Γ[(∆1, ∆2)]⇒ α
,

(c)
Γ[(∆, ∆)]⇒ α

Γ[∆]⇒ α
(a)

Γ[((∆1, ∆2), ∆3)]⇒ α

Γ[(∆1, (∆2, ∆3))]⇒ α
.

NL with (a) is equivalent to L. Logics with (e) are interpreted in commutative
algebras (x · y = y · x for all elements x, y); then x\y = y/x, and one writes
x→ y for both. So the connectives of L with (e) are ·,→, and similarly for NL
with (e).

Substructural logics are often defined as axiomatic and rule extensions of Full
Lambek Calculus (FL): L∗ enriched with constants 1, 0 and lattice connectives
∧,∨ (optionally also constants ⊥,>, interpreted as the least element and the
greatest element). 1 is interpreted as the unit element for product and 0 as
an arbitrary element (one defines two negations ∼ x = x\0, −x = 0/x; in
commutative algebras they collapse to one negation ¬). The algebraic models
of FL are residuated lattices, i.e. lattice-ordered residuated monoids; see [23].
The nonassociative version FNL corresponds to lattice-ordered residuated unital
groupoids; see [23, 19]. According to the terminology of linear logics, ·, \, /, 1, 0
are called multiplicative connectives and constants, while ∧,∨,⊥,> are called
additive connectives and constants. FL is a conservative extension of L∗ and
FNL of NL∗. L∗ is the multiplicative fragment of FL (without 1, 0).

Many important nonclassical logics belong to this family. For instance,
intuitionistic logic (IL) amounts to FL with (e), (i), (c) and the definition
0 = ⊥, multiplicative-additive linear logic (MALL) to FL with (e) and the
axiom ¬¬α ⇒ α, and Lukasiewicz logic L∞ to FL with (e), (i), the definition
0 = ⊥ and the axiom (α→ β)→ β ⇒ α∨ β. Noncommutative and nonassocia-
tive versions of these logics are also studied.

Type grammars usually apply multiplicative substructural logics, which can
be interpreted in language models: NL, NL∗, L, L∗. Logics of semantic types

22

are formalized with (e) and, possibly, other structural rules. Logics with ∧,∨
are less popular, although there are good reasons for them; see below. One also
considers logics with new residuated operations, e.g. unary modalities ♦i and
their residuals �↓

i . In algebras, ♦ and �↓ are connected by the unary residuation
law: ♦x ≤ y iff x ≤ �↓y. (In general, �↓ is different from �, i.e. the De Morgan
dual of ♦.) L and NL with unary modalities were applied by e.g. Moortgat [38]
and Morrill [40] to allow a controlled usage of some structural rules (in a similar
role that exponentials are used in linear logics).

Systems not allowing empty antecedents of sequents, like NL, L, are not
popular among logicians; no single formula α (i.e. no sequent ⇒ α) is prov-
able, hence these logics cannot be presented as Hilbert-style systems, nor easily
compared with other nonclassical logics. In type grammars, however, they are
extensively used, starting from Lambek [32] (also AB is a logic of this kind).
Logics with empty antecedents are too strong, in a sense. Adjectives can be
typed N/N , where N is the type of common noun (so adjectives are treated as
common noun modifiers) and adverbs (N/N)/(N/N) (adjective modifiers). In
semantics, adjectives act as functions which send a set of individuals to its sub-
set and adverbs act as higher-order functions which modify adjectival functions.
In L∗ α/α⇔ (α/α)/(α/α) is provable (this means: sequents in both directions
are provable), hence adjectives are indistinguishable from adverbs. This is un-
acceptable for linguistics (‘a beautiful student’ is correct, but ‘a very student’ is
not). One can solve this problem by introducing new types, e.g. a new atomic
type for adjectives, but it complicates the grammar and is less satisfactory from
the semantic viewpoint.

On the other hand, both kinds of logics (i.e. with and without empty an-
tecedents) are closely related. A faithful interpretation of FL in its version with-
out empty antecedents has been shown in [20]; this interpretation also works for
several stronger logics, allowing cut elimination.

On the basis of L and its variants, one can analyze compound expressions
more easily and deeply than in AB-grammars. With ‘John’: n, ‘likes’: (n\s)/n,
‘some’: ((s/n)\s)/N , ‘teacher’: N , we have ‘John likes some teacher’: s, since
the sequent:

n, (n\s)/n, ((s/n)\s)/N, N ⇒ s

is provable in L. This sequent is not provable in AB; an AB-grammar must also
assign n\(s/n) to ‘likes’. (The associative law α\(β/γ) ⇔ (α\β)/γ is provable
in L.) Another example is ‘he likes her’ with ‘he’: s/(n\s) and ‘her’: (s/n)\s.
The sequent:

s/(n\s), (n\s)/n, (s/n)\s⇒ s

is provable in L but not in AB, and an AB-grammar needs additional types,
e.g. ‘he’: (s/n)/((n\s)/n). (The Geach law α/β ⇒ (α/γ)/(β/γ) is provable
in L, and similarly for its dual with \.) In general, AB-grammars must assign
many types to one word to account for different syntactic roles of this word,
while L-grammars can derive the other types from some main types and explain
logical relations between types.

23

Associative logics are essentially stronger than their nonassociative versions.
Type-raising laws and expansion laws are provable in NL, but associative laws,
composition laws and Geach laws are not. It may be argued that associative
logics are too strong for type grammars. Lambek’s example uses ‘Mary’: n,
‘poor’: n/n (as ‘poor John’: n), ‘him’: (s/n)\s, and ‘likes’, ‘John’ typed as
above. On the basis of L ‘Mary likes poor John’: s, but also ‘Mary likes poor
him’: s, though the latter is incorrect in English. The sequent:

n, (n\s)/n, n/n, (s/n)\s⇒ s (4)

is provable in L but not in NL (this means: no sequent Γ ⇒ s such that the
antecedent of (4) is the yield of Γ is provable in NL). This was a reason for
replacing L by NL in [33]. Moortgat [38] treats NL as a basic type logic and
increases its power by adding modalities ♦,�↓.

Now we briefly discuss some relations of Lambek grammars to AB-grammars.
Every L-grammar G can be transformed into an infinite AB-grammar G:

IG(a) contains all types β such that α⇒ β is provable in L, for some α ∈ IG(a).
One shows L(G, α) = L(G, α), for any type α, and consequently, L(G) = L(G).
An analogous transformation works for NL-grammars.

Since the antecedents of sequents in NL are formula structures of the form
of phrase structures, then NL-grammars naturally assign types to phrase struc-
tures. Similarly as in Section 2, IG is extended for all structures from ΣP

G by
setting: IG((XY)) = {(Γ, ∆) : Γ ∈ IG(X), ∆ ∈ IG(Y)}. For NL-grammars
and L-grammars, the types of fa-structures can be defined as those assigned by
the infinite AB-grammar G; by dropping structure markers we get the types of
ps-structures and strings. For NL-grammars, the second typing of phrase struc-
tures is equivalent to the first one. In NL-grammars and L-grammars, different
fa-structures with the same ps-yield are indistinguishable (this means: they are
assigned the same types) and in L-grammars this also holds for different phrase
structures with the same yield. The possibility of interchanging functors and
arguments is a result of type-raising laws.

Consequently, for an NL-grammar G, LF (G) consists of all fa-structures
whose ps-yield belongs to LP (G); for an L-grammar G, both LF (G) and LP (G)
consist of all structures (of the appropriate kind) whose yield belongs to L(G).
So NL-grammars are grammars of phrase structures, and L-grammars are gram-
mars of strings.

Kandulski [28, 29] proves the P-equivalence of type grammars based on NL
and AB; hence NL-grammars are equivalent to ε−free CFGs. This proof shows
that for any NL-grammar G, one can construct an AB-grammar G′ such that
LP (G) = LP (G′) and IG(a) ⊆ IG′(a) ⊆ IG(a), for any a ∈ ΣG. So G′ is a finite
fragment of the infinite AB-grammar G. Analogous results for product-free
NL-grammars were earlier proved in [12].

The equivalence of L-grammars and ε−free CFGs was proved by Pentus [43].
Hence L-grammars are equivalent to AB-grammars. The P-equivalence does not
hold: L-grammars allow all possible phrase structures of the generated strings,
hence they can generate ps-languages of infinite degree.

24

[15] shows that every product-free L-grammar G is equivalent to some AB-
grammar G′, extending G and being a finite fragment of G, as above. G′ can
be treated as a natural AB-grammar equivalent to G.

We turn to the main topic of this paper: syntactic categories.
By the equivalence results discussed above, the theory of AB-grammars,

presented in Section 2, can be applied, essentially, to NL-grammars and L-
grammars if we replace the latter with (natural) AB-grammars equivalent to
them. In this sense Ajdukiewicz’s approach to syntactic categories preserves its
merits for grammars based on Lambek logics. As a rule, a direct application of
this approach to Lambek grammars is impossible or, at least, problematic.

The strict concordance of typed categories and substitution classes is impos-
sible even for one-valued Lambek grammars. In opposition to AB, Lambek logics
provide laws of the form α⇒ β such that α 6= β, e.g. type-raising laws (in NL
and L) and Geach laws (in L). If α ⇒ β is provable, then L(G, α) ⊆ L(G, β);
if, additionally, β ⇒ α is not provable and β ∈ IG(a), then a ∈ L(G, β),
a 6∈ L(G, α), hence L(G, α) ⊂ L(G, β). The same holds for typed categories
consisting of structures. Accordingly, typed categories do not partition the uni-
verse of (well-formed) expressions, hence they cannot coincide with substitution
classes.

In language models of L, all typed categories are generated from basic cat-
egories by the operations ·, \, /. Let P be a set of atomic types. The basic
categories are the values of a map c : P 7→ P(Σ+). The map c is uniquely
extended to all types on P , by the homomorphism equations:

c(α · β) = c(α) · c(β), c(α\β) = c(α)\c(β), c(α/β) = c(α)/c(β). (5)

For an L-grammar G, by PG we denote the set of atomic types involved in
G. For any p ∈ PG, we define cG(p) = L(G, p). The map cG can be extended
as above. We are faced with the natural problem of whether typed categories
in the grammar are compatible with typed categories in the model. [10] shows
that the strong condition: cG(α) = L(G, α), for all product-free types α on PG,
cannot be attained for L-grammars, nor AB-grammars.

A type grammar G is said to be weakly complete, if this condition holds for
all α ∈ s(T (G)), and correct, if a ∈ cG(α) whenever α ∈ IG(a), for all types α
and words a.

Every weakly complete grammar is correct. Not all grammars are cor-
rect. For instance, the AB-grammar G with a : s/(s/s), b : s/s is incor-
rect; bb ∈ cG(s/s), but bb 6∈ L(G, s/s), hence abb 6∈ cG(s), and consequently,
a 6∈ cG(s/(s/s)). The analogous grammar based on L is weakly complete, hence
correct. Nonetheless there exist incorrect L-grammars. By extending ΣG, ev-
ery product-free L-grammar G can be extended to some weakly complete L-
grammar which is equivalent to G for strings on ΣG. If an AB-grammar is
correct, then it is equivalent to the L-grammar having the same lexicon, the
same initial type assignment and the same designated type. If G is correct,
then cG is the least map c satisfying: a ∈ c(α) whenever α ∈ IG(a) (with re-
spect to the partial ordering: c ≤ c′ if and only if c(p) ⊆ c′(p) for all p ∈ PG).

25

This resembles the characterization of context-free languages as the minimal
solutions of finite systems of linear equations in languages. Analogous results
can be obtained for NL-grammars.

Notice that the incorrect AB-grammar, presented above, is one-valued and
well-constructed. So even such AB-grammars, though fully compatible with
Ajdukiewicz’s postulates for syntactic categories, need not be compatible with
Lambek’s approach. This is not surprising, since the two approaches essentially
differ in the interpretation of functor types. For AB-grammars, language models
should be replaced by more general structures; instead of (5) one only assumes
c(α\β) ⊆ c(α)\c(β), and similarly for β/α.

The mathematical research in type logics focused on the completeness of type
logics with respect to language models, the equivalence of categorial grammars
and production grammars (especially CFGs), the computational complexity of
type logics and categorial grammars, and others. Here we do not discuss these
matters in detail; the reader is referred to [16, 18, 38, 39].

Pentus [44] proves the completeness of L with respect to language models
P(Σ+); this also holds for L∗ and the corresponding language models P(Σ∗).
The strong completeness does not hold, but it holds for the product-free frag-
ments of these logics, even with ∧,>. In language models we interpret ∧,∨ as
the set-theoretic intersection (∩) and union (∪) of languages, and > as the total
language.

Types with ∧,∨ are not often used in type grammars, but there are good
reasons to work with them. Lambek [33] applied ∧ to replace a multi-valued
type assignment a : α1, . . . , αn with the one-valued assignment a : α1 ∧ · · · ∧αn.
Kanazawa [26] considered types sensitive to features, e.g. np∧sing (singular
noun phrase), np∧pl (plural noun phrase); he also proved that FL-grammars
generate some languages which are not context-free. The two types of noun
phrase, s/(n\s) (subject) and (s/n)\s (object), yield the type ((s/(n\s)) ∧
((s/n)\s))/N of determiners. Lambek [34] links the subtypes with the main
type by nonlogical axioms (assumptions), e.g. πk ⇒ π, sk ⇒ s; see Section 1. A
similar effect can be reached by defining π = π1 ∨π2 ∨π3, s = s1 ∨ s2; then, the
type change formalism remains a pure logic (it is a theory in [34], a violation of
lexicality).

FL is not complete with respect to language models, e.g. the distributive
laws for ∧,∨ are valid in language models but not provable in FL. One can add
to FL the axiom:

(D) α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ) .

The resulting logic is called Distributive Full Lambek Calculus (DFL), and
DFNL is an analogous extension of FNL. The remaining distributive laws are
provable. The present axiomatization does not allow cut elimination, but cut-
free systems for these logics exist; see [31].

An interesting linguistic interpretation of FL and related logics, not assuming
the distributive laws for ∧,∨, uses Syntactic Concept Lattices (SCLs), applied
by Clark [22] in some learning procedures for formal grammars. By a context

26

on Σ one means a pair (u, w) ∈ (Σ∗)2. Let L ⊆ Σ∗ be a fixed language. For
any U ⊆ Σ∗, one defines UB as the set of all contexts (u, w) such that uvw ∈ L,
for all v ∈ U . For any S ⊆ (Σ∗)2, one defines SC as the set of all v ∈ Σ∗ such
that uvw ∈ L, for all (u, w) ∈ S. The operations B,C form a Galois connection
(U ⊆ SC if and only if S ⊆ UB), and consequently, the operation C(U) =
UBC is a closure operation on P(Σ∗). Furthermore, C is a nucleus (it satisfies
C(U) ·C(V) ⊆ C(U · V)). The closed sets (i.e. satisfying C(U) = U) are called
the syntactic concepts determined by L. Let CL denote the family of syntactic
concepts determined by L. One shows that CL is closed under \, / (defined in
P(Σ∗)) and ∩. One also defines U ·C V = C(U · V), U ∪C V = C(U ∪ V),
1C = C({ε}). CL with these operations is a residuated lattice (not necessarily
distributive), called the SCL determined by L. FL is strongly complete with
respect to SCLs [49]. Analogous results can be obtained for FNL and logics not
allowing empty antecedents if one modifies SCLs appropriately.

Syntactic concepts in the sense of [22] can be interpreted as syntactic cate-
gories determined by the language L. This is a generalization of Ajdukiewicz’s
idea of a syntactic category as a substitution class. Although syntactic concepts
are not equivalence classes of the relation of mutual substitutability, they are
determined by sets of contexts. For instance, in the nonassociative format, the
category of singular noun phrases is determined by the single context (exists),
since (X exists) is a correct sentence if and only if X is a singular noun phrase.
This remarkable generalization of Ajdukiewicz’s approach has not yet been de-
veloped in the theory of type grammars. A similar idea of syntactic categories
was elaborated in the contextual grammars of S. Marcus.

Finally, we will briefly discuss logics of semantic types. Following van Ben-
them [7], we admit two atomic types: e (entity) and t (truth value); they corre-
spond to i and w of Ajdukiewicz [3]. Other atomic types can also be considered,
e.g. the type of quantifiers (interpreting noun phrases) was taken as atomic in
[30]. Functional types are of the form α→ β; one also writes (αβ), for brevity.

Some simple semantic types are: (tt) (unary truth-value function), (t(tt))
(binary truth-value function), (et) (unary predicate, i.e. set of individuals),
(e(et)) (binary predicate), ((et)t) (quantifier, i.e. family of sets of individuals),
((et)(et)) (operation on unary predicates, e.g. complement), ((et)((et)(et)))
(binary operation on unary predicates, e.g. union, intersection).

No serious presentation of type-theoretic semantics applied to language is
possible in this short essay; the reader may consult any book on Montague
Grammar and similar approaches, e.g. [37, 30, 7, 42, 39].

The product-free L with (e) was proposed by van Benthem [7] as a logic of
semantic types (sometimes referred to as the Lambek-van Benthem calculus).
In this logic one proves semantic counterparts of the laws provable in L. The
type-raising law takes the form α ⇒ ((αβ)β). Its instance e ⇒ ((et)t) changes
the type of individuals to the type of quantifiers, a move anticipated by R.
Montague; see the beginning of this section. The Geach law (αβ)⇒ ((γα)(γβ))
yields (tt) ⇒ ((et)(et)); this shifts the initial type (tt) of ‘not’ to the type of
boolean complement on sets of individuals, as in (John (is (not happy))). Also
(tt)⇒ (((et)t)((et)t)) shifts (tt) to the type of boolean complement on families

27

of sets of individuals, as in ((not (every student)) came).
The Curry-Howard isomorphism is a correspondence between proofs in ND-

systems and typed lambda-terms. The ND-system for the product-free L with
(e) admits the axioms (Id) and the rules:

(E→)
Γ⇒ α→ β ; ∆⇒ α

Γ, ∆⇒ β
, (I→)

Γ, α⇒ β

Γ⇒ α→ β
.

Here the antecedents of sequents are (nonempty) finite multisets of formulae;
the comma stands for the union of multisets. Proofs can be encoded by typed
lambda-terms. The axiom α ⇒ α is encoded by x : α. The elimination rule
(E→) corresponds to application: if M : α→ β and N : α then MN : β, and the
introduction rule (I→) to abstraction: if M : β and x : α then λx.M : α→ β.

Let us consider the proof of e⇒ ((et)t) and its encoding. From (et)⇒ (et)
(x : (et)) and e ⇒ e (y : e), we get (et), e ⇒ t (xy : t), by (E→). Then (I→)
yields e⇒ ((et)t) (λx.xy : ((et)t)).

One interprets this formalism in a fixed model, i.e. a hierarchy of seman-
tic domains (ontological categories) Dα, for semantic types α. If one valuates
the free variable y with an individual d ∈ De, then λx.xy denotes the fam-
ily of all U ⊆ De such that d ∈ U (sets, families of sets, etc. are identified
with their characteristic functions). Thus, the proof of e ⇒ ((et)t) is encoded
by a lambda-term which determines a semantic transformation: the initial de-
notation d (an individual) is sent to the higher-order denotation λx(et).xy (a
quantifier, here: the principal ultrafilter determined by d). This is a general
paradigm: by the Curry-Howard isomorphism, proofs in this system determine
semantic transformations, which modify the initial denotations of expressions.

A proof of (tt)⇒ ((et)(et)) is encoded by λx(et)ye.z(tt)(xy) : ((et)(et)). If z
is valuated by the truth-value function of negation, then this term denotes the
boolean complement on sets of individuals, i.e. the denotation of ‘not’ in e.g.
(John (is (not happy))).

On the other hand, (t(tt)) ⇒ ((et)((et)(et))), needed to shift the initial
type of ‘and’, ‘or’ to the type of predicate conjunction, as in (Mary (sings and
dances)), cannot be proved in L with (e). The contraction rule (c) is needed to
infer this law from (t(tt)), (et), e, (et), e ⇒ t (provable in L with (e)). Thus, it
is reasonable to admit more structural rules in logics of semantic types.

Proofs in the ND-system for L with (e) precisely correspond to the lambda-
terms fulfilling the following constraints: (c1) each subterm has a free variable,
(c2) no subterm has more than one occurrence of the same free variable, (c3) for
any subterm λx.M , x is free in M . Dropping (c1) amounts to admitting empty
antecedents, dropping (c2) adds contraction, and dropping (c3) adds integrality.

It is well known that the normalization procedure for typed lambda-terms
corresponds to proof normalization in ND-systems. Every sequent provable in
the product-free L with (e) possesses only finitely many normal proofs, so the
corresponding lambda-terms define only finitely many semantic transformations.
In other words, every provable sequent admits only finitely many semantic read-
ings; this result is due to van Benthem [7]. This does not hold for logics with
contraction.

28

Syntactic types can be mapped to semantic types. The map m can be
defined on atomic types by m(s) = t, m(n) = e, m(N) = (et) etc.; then, it is
extended to all types by m(α\β) = m(β/α) = (m(α)m(β)). Every proof in the
product-free L can be interpreted as a proof in L with (e), if one replaces each
type α by m(α). Consequently, syntactic derivations in L-grammars determine
semantic transformations, described above.

The map m is not one-one: different syntactic types collapse to one semantic
type. Semantic types ignore the directionality. On the basic level, N and n\s
are interpreted as (et), although the syntactic roles of common nouns and verb
phrases are completely different.

As we have noted at the end of Section 2, semantics can be made sensitive to
syntactic roles. Directional types α\β and β/α can be used as semantic types.
Dα\β (resp. Dβ/α) is defined as the set of pairs (r, f) (resp. (l, f)) such that
f : Dα 7→ Dβ .

In this approach, noncommutative type logics L, L∗ etc. can directly be
applied as logics of semantic types. The appropriate version of Curry-Howard
isomorphism relates proofs in these logics (presented as ND-systems) with di-
rectional lambda-terms, employing directional types, two lambdas λr and λl,
and appropriately modified applications. The term construction rules are: (1)
(MN)2 : β, if M : α, N : α\β, (2) (MN)1 : β, if M : β/α, N : α, (3)
λrx.M : α\β, if x : α, M : β, (4) λlx.M : β/α, if x : α, M : β. The direc-
tional lambda calculus behaves like the standard one with regard to fundamental
logical and computational properties (strong normalization, the Curry-Howard
isomorphism). These ideas were announced in e.g. [14, 16] and further worked
out by Wansing [48].

Within this framework the collapse of different syntactic categories into one
semantic category can easily be removed. Although common nouns may be
interpreted as functions from De to Dt, they are not treated as functors: f is
neither (r, f), nor (l, f). Thus, DN is a basic ontological category, consisting of
such functions, but DN 6= De\t, the latter consisting of pairs (r, f), for f ∈ DN .
As a consequence, the semantic category of type N does not collapse with the
semantic category of type e\t. Going this way, one attains a better compatibility
of syntactic and semantic categories in Lambek grammars.

References

[1] K. Ajdukiewicz, W sprawie ‘uniwersaliów’. (On the Problem of ‘Univer-
sals’.) Przegla̧d Filozoficzny 37, (1934), 219–234.

[2] K. Ajdukiewicz, Die syntaktische Konnexität. (Syntactic Connexion.) Stu-
dia Philosophica 1, (1935), 1–27.

[3] K. Ajdukiewicz, Zwia̧zki sk ladniowe miȩdzy cz lonami zdań oznajmuja̧cych.
(Syntactical Connections between Constituents of Declarative Sentences.)
Studia Filozoficzne 6.21, (1960), 73–86.

29

[4] K. Ajdukiewicz, The Scientific World-Perspective and Other Essays, 1931-
1963., (J. Giedymin, Ed.), D. Reidel, Dordrecht, 1978.

[5] Y. Bar-Hillel, A quasi-arithmetical notation for syntactic description. Lan-
guage 29, (1953), 47–58.

[6] Y. Bar-Hillel, C. Gaifman and E. Shamir, On categorial and phrase struc-
ture grammars. Bull. Res. Council Israel F9, (1960), 155–166.

[7] J. van Benthem, Essays in Logical Semantics. D. Reidel, Dordrecht, 1986.

[8] J. van Benthem and A. ter Meulen (Eds.), Handbook of Logic and Language,
Elsevier, The MIT Press, Amsterdam, 1997.

[9] J.M. Bocheński, On the syntactical categories. New Scholasticism 23,
(1949), 257–280.

[10] W. Buszkowski, Compatibility of a categorial grammar with an associated
category system. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik 28.3, (1982), 229–238.

[11] W. Buszkowski, Typed functorial languages. Bull. Pol. Acad. Sci. Math.
34.7-8, (1986), 495–505.

[12] W. Buszkowski, Generative capacity of Nonassociative Lambek Calculus.
Bull. Pol. Acad. Sci. Math. 34.7-8, (1986), 507–516.

[13] W. Buszkowski, Solvable problems for classical categorial grammars. Bull.
Pol. Acad. Sci. Math. 35.5-6, (1987), 373–382.

[14] W. Buszkowski, Logiczne podstawy gramatyk kategorialnych Ajdukiewicza-
Lambeka. (Logical Foundations of Ajdukiewicz-Lambek Categorial Gram-
mars.) Państwowe Wydawnictwo Naukowe, Warszawa, 1989.

[15] W. Buszkowski, Extending Lambek grammars to basic categorial gram-
mars. Journal of Logic, Language and Information 5.3-4, (1996), 279–295.

[16] W. Buszkowski, Mathematical Linguistics and Proof Theory. In: [8], 683–
736.

[17] W. Buszkowski, The Ajdukiewicz calculus, Polish notation and Hilbert-
style proofs. In: The Lvov-Warsaw School and Contemporary Philosophy.
(J. Woleński, Ed.), Kluwer, Dordrecht, 1998, 241–252.

[18] W. Buszkowski, Lambek calculus and substructural logics. Linguistic Anal-
ysis 36.1-4, (2010), 15–48.

[19] W. Buszkowski, Interpolation and FEP for logics of residuated algebras.
Logic Journal of the IGPL 19.3, (2011), 437–454.

30

[20] W. Buszkowski, An interpretation of Full Lambek Calculus in its vari-
ant without empty antecedents of sequents. In: Logical Aspects of Compu-
tational Linguistics 2014. (N. Asher and S. Soloviev, Eds.), LNCS 8535,
Springer, 2014, 30–43.

[21] W. Buszkowski and G. Penn, Categorial grammars determined from lin-
guistic data by unification. Studia Logica 49.4, (1990), 431–454.

[22] A. Clark, A learnable representation for syntax using residuated lattices.
Lecture Notes in Artificial Intelligence 5591, 2011, 183–198.

[23] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An
Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007.

[24] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading, 1979.

[25] E. Husserl, Logische Untersuchungen. Halle, 1900-1901.

[26] M. Kanazawa, The Lambek calculus enriched with additional connectives.
Journal of Logic, Language and Information 1.2, (1992), 141–171.

[27] M. Kanazawa, Identification in the limit of categorial grammars. Journal
of Logic, Language and Information 5.2, (1996), 115–155.

[28] M. Kandulski, The equivalence of nonassociative Lambek categorial gram-
mars and context-free grammars. Zeitschrift für mathematische Logik und
Grundlagen der Mathematik 34.1, (1988), 41–52.

[29] M. Kandulski, Phrase structure languages generated by categorial gram-
mars with product. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik 34.3, (1988), 373–383.

[30] E.L. Keenan and L.M. Faltz, Boolean Semantics for Natural Language. D.
Reidel, Dordrecht, 1985.

[31] M. Kozak, Distributive Full Lambek Calculus has the finite model property.
Studia Logica 91.2, (2009), 201–216.

[32] J. Lambek, The mathematics of sentence structure. American Mathematical
Monthly 65, (1958), 154–170.

[33] J. Lambek, On the calculus of syntactic types. In: Structure of Language
and Its Mathematical Aspects. (R. Jakobson, Ed.), AMS, Providence, 1961,
166–178.

[34] J. Lambek, From Word to Sentence: a computational algebraic approach
to grammar. Polimetrica, 2008.

[35] S. Leśniewski, Grundzüge eines neuen Systems der Grundlagen der Math-
ematik. Fundamenta Mathematicae 14, (1929), 1–81.

31

[36] W. Marciszewski, How freely can categories be assigned to expressions of
natural language? A case study. In: Categorial Grammar, (W. Buszkowski,
W. Marciszewski and J. van Benthem, Eds.), J. Benjamins, Amsterdam,
1988, 197–220.

[37] R. Montague, Formal Philosophy. (R.H. Thomason, Ed.), Yale University
Press, New Haven, 1974.

[38] M. Moortgat, Categorial Type Logics. In: [8], 93–177.

[39] R. Moot and C. Retoré, The Logic of Categorial Grammars. A Deduc-
tive Account of Natural Language Syntax and Semantics. Lecture Notes in
Computer Science 6850, Springer, 2012.

[40] G. Morrill, Type-Logical Grammar. Categorial Logic of Signs. Kluwer, Dor-
drecht, 1994.

[41] A. Nowaczyk, Categorial languages and variable-binding operators. Studia
Logica 37, (1978), 27–39.

[42] B. H. Partee, A. ter Meulen and R.E. Wall, Mathematical Methods in Lin-
guistics. Kluwer, Dordrecht, 1990.

[43] M. Pentus, Lambek grammars are context-free. In: Proc. 8th IEEE Sym-
posium on Logic in Computer Science, 1993, 429–433.

[44] M. Pentus, Models of the Lambek calculus. Annals of Pure and Applied
Logic 75, (1995), 179–213.

[45] R. Suszko, Syntactic structure and semantical reference. I. Studia Logica 8,
(1958), 213–244. II. Studia Logica 9, (1960), 63–91.

[46] M. Ta lasiewicz, Philosophy of Syntax. Foundational Topics. Trends in Logic
29, Springer, 2010.

[47] A. Tarski, Pojȩcie prawdy w jȩzykach nauk dedukcyjnych. Warszawa, 1933.
English version: The concept of truth in formalized languages. In: A.
Tarski, Logic, Semantics, Metamathematics. Clarendon, Oxford, 1956.

[48] H. Wansing, The logic of information structures. PhD Thesis, University
of Amsterdam, 1992.

[49] C. Wurm, Completeness of Full Lambek Calculus for Syntactic Concept
Lattices. Lecture Notes in Computer Science 8036, 2013, 126–141.

[50] U. Wybraniec-Skardowska, Theory of Language Syntax. Categorial Ap-
proach. Kluwer, Dordrecht, 1991.

32

