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1. Introduction

Substructural logics are nonclassical logics whose sequent sys-
tems avoid some structural rules, e.g Exchange (a-b = b - a in al-
gebraic setting), Contraction (a < a - a), and Weakening (a - b < a),
which occur in standard sequent systems of classical and intuition-
istic logics. These logics have a long tradition (Schroeder-Heister
and Dosen, 1993); well-known substructural logics are relevant log-
ics (omit Weakening) and some many-valued logics (omit Contrac-
tion). More recently, linear logics, introduced by Girard (1987), ad-
mit Exchange (commutative versions) or drop the three structural
rules (noncommutative versions). Algebraic methods in substruc-
tural logics were developed in (Ono and Komori, 1985) and many
other works; see the recent book (Galatos et al., 2007).

Syntactic Calculus of Lambek (1958) is a typical noncommu-
tative substructural logic, intended to provide nontrivial transfor-
mations of syntactic types. From the modern perspective, this cal-
culus, now called the Lambek calculus, is equivalent to the intu-
itionistic noncommutative Multiplicative Linear Logic (precisely,
it is true for the Lambek calculus with unit). Its commutative ver-
sion (with Exchange) is the Lambek-van Benthem calculus of se-
mantic types, corresponding via the Curry-Howard isomorphism to
linear lambda terms, not containing closed subterms (van Benthem,
1991). The nonassociative Lambek calculus, introduced by Lambek
(1961), even lacks the associativity rule, whence the antecedents of
sequents are trees, not simply sequences, of formulas (types). This
system is natural for the representation of linguistic expressions in
the form of trees (phrase structures). The nonassociative Lambek
calculus is regarded as a basic type logic, which can be further ex-
tended by new operations, e.g. modalities, allowing a controlled
usage of certain structural rules (Moortgat, 1997). There are nat-
ural connections between the Lambek calculus and category theory
(Lambek, 1995). The logic of pregroups - an extension of Syntac-
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tic Calculus, due to Lambek (1999)) - is closely related to compact
2-categories (Preller and Lambek, 2007).

The mathematical research on Lambek systems revived in the
early 1980-ties. The present author and his colleagues from Poznan
(W. Zielonka, M. Kandulski, and others) investigated logical and
computational properties of Lambek systems and categorial gram-
mars, based on them (Lambek grammars); some properties of clas-
sical categorial grammars and other type grammars were also stud-
ied. At the same time, the Dutch school (J. van Benthem, F. Zwarts,
M. Moortgat, and their students) investigated Lambek systems in
relation to the lambda calculus and natural language semantics;
there were developments toward general logics of information pro-
cessing (van Benthem, 1986, 1991, 2005). Moortgat (1996) and
Morrill (1994) elaborated different modal versions of Lambek sys-
tems, with interesting applications in language description. Some
parallel research was done by scholars adhering to the tradition of
Montague Grammar (B. Hall-Partee, E. Bach, R. T. Oehrle) and
the Curry-Shaumyan combinatory grammars (M. Steedman, A. Sz-
abolcsi). This early period is well documented in collection vol-
umes (Buszkowski et al., 1988; Oehrle et al., 1988).

Further research was partially influenced by the origin of lin-
ear logics and extensive studies on them in the early 1990-ties.
Also conversely, some fundamental ideas of linear logics seem to
have been anticipated (if not directly influenced) by the earlier work
on Lambek systems. For instance, Girard’s usage of exponentials,
which reintroduces structural rules (under control) in linear logic,
influences Moortgat’s and Morrill’s application of modalities. On
the other hand, Girard’s proof of the completeness of Propositional
Linear Logic with respect to phase-space semantics is a refinement
of the proof of completeness of the product-free Lambek calcu-
lus with respect to powerset frames over free semigroups, given in
(Buszkowski, 1986a) and its commutative version in (van Benthem,
1988a). The literature on Lambek systems and categorial grammars
shows many other links of this kind. The present paper aims to dis-
cuss some of them.

To keep this paper in a reasonable size, I omit many interest-
ing topics, e.g. Curry-Howard isomorphism, Abstract Categorial
Grammars (an explicit application of the typed lambda-calculus as a
grammar formalism, due to de Groote (2001)), proof nets (a graph-
theoretic representation of proofs in multiplicative linear logics),
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modal categorial grammars, combinatory grammars, and learning
theory. For some information on these topics see survey articles
(Moortgat, 1997; Buszkowski, 1997, 2003b); also see the books
cited above, the collection (Casadio et al., 2005), and two special
issues of Studia Logica: 71.3 (2002) and 87.2-3 (2007).

Section 2 presents different Lambek systems and their algebraic
models. It also provides some basic linguistic interpretations of type
logics. Section 3 introduces sequent systems of type logics, dis-
cusses cut elimination and its consequences, and shows some appli-
cations of sequent systems in proofs of fine completeness theorems.
Section 4 is concerned with categorial grammars, based on different
type logics; we show how certain proof-theoretic tools (cut elimina-
tion, normalization, interpolation) are used to establish basic prop-
erties of Lambek systems and grammars (decidability, generative
capacity, complexity). Section 5 briefly outlines some ways in the
opposite direction: some results on Lambek systems and grammars
help to solve problems in substructural logics.

2. Lambek calculi and their algebraic models

Lambek (1958) introduced Syntactic Calculus as a formal logic
of syntactic types, an extension of the type reduction system under-
lying categorial grammars, due to Ajdukiewicz (1935). The calcu-
lus is referred to as (Associative) Lambek Calculus (L). Its nonas-
sociative version, introduced in (Lambek, 1961), is called Nonasso-
ciative Lambek Calculus (NL). The latter is a pure logic of residu-
ation triple: a basic (residuated) operation - with two residual oper-
ations \, /, which satisfy the residuation law:

(RES)a-b<ciff b<a\ciffa<c/b,

where < is a partial ordering. One refers to - as product and to \
(resp. /) as the right (resp. left) residual operation for product.

In algebraic terms, NL corresponds to residuated groupoids,
i.e. ordered algebras (M, <, -,\, /) such that (M, <) is a poset, and
-,\, / are binary operations on M, satisfying (RES). L corresponds
to residuated semigroups, i.e. residuated groupoids in which prod-
uct is associative. In what follows, M (possibly with subscripts etc.)
denotes an algebra and M its universe.
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Every residuated groupoid fulfills the following monotonicity
laws:

(MON1l)ifa<bthenc-a<c-banda-c<b-c,
(MON2) ifa < b then c\a < c¢\b and b\c < a\c,
(MON3)ifa <bthena/c <b/candc/b < c/a,

for all elements a, b, c. We often write ab for a - b.

The algebraic form of NL can be presented as follows. Types
are formed out of variables (also called: atomic types) by means
of three operation symbols -, \, /. Types amount to formulas of our
formal systems. Atomic types are denoted by p,q,r,... and arbi-
trary types by A, B, C,.... Simple sequents are formal expressions
A = B. The axioms are:

Id)A= A,
and the inference rules are:
A-B=>C B = A\C
RES-R1) ————, (RES-R2) ———
(RES )B:A\C’( S )A-BzC’
A-B=C A= C/B
RES-R3) ——————, (RES-R4) ——
( )A:>C/B’( )A-B:>C’
A=>B; B=C
(S-CUT);
A=C

= is interpreted as <. The algebraic form of L is obtained by affix-
ing two new axioms, which express the associative law:

(AsHh)(A-B)-C=A-(B-C), (As2)A-(B-C)=(A-B)-C.
The following rules are derivable in both NL and L:

A=>B A=>B
MON-RI’) ——
» (MON )A-C=>B-C’

(MON-R2) A— A=>B
C\A = C\B B\C = A\C”’

A= B A=B
MON-R3) ———, (MON-R3’) ——.
( ) A/C = B/C ( ) C/B=CJ/A

MON-R1) ———
(MO )C-A=>C-B

, (MON-R2)
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Recall that a rule %, where O is a set of sequents and S is a se-
quent, is derivable in a logic L, if S is provable in L enriched with
all sequents from @ as assumptions (in other words: S is provable
from @ in £). We write @ +, S for: S is provable from @ in L. So
Fr S means that S is provable in the pure £ (without any assump-
tions). Assumptions are concrete sequents; one does not require that
@ is closed under substitutions (of arbitrary types for variables). On
the contrary, the set of axioms is always required to be closed un-
der substitutions. For instance, (Id), (Asl) and (As2) represent all
possible sequents of the above form.

We list several laws provable in L.

(L1)A - (A\B) = B, (BJA)- A = B (application laws),

(L2) (A\B) - (B\C) = A\C, (A/B) - (B/C) = A/C (composition
laws),

(L3) A\B = (C\A)\(C\B),A/B = (A/C)/(B/C) (Geach laws),
(L4) A = (B/A)\B, A = B/(A\B) (type-raising laws),
(L5) A= B\(B-A),A = (A- B)/B (expansion laws),

(L6) (A\B) - C = A\(B-C),A-(B/C) = (A - B)/C (switching
laws).

Only (L1), (L4) and (L5) are provable in NL. To prove (L1)
apply (RES-R2) (resp. (RES-R4) to (Id) A\B = A\B (resp. B/A =
B/A). (L2) follow from (L1), using (MON-R1), associativity and
(RES-R1), (RES-R3). The remaining proofs are left to the reader.

Let us briefly discuss the linguistic meaning of these laws. The
basic interpretation refers to syntax. X is the lexicon of some lan-
guage. Sentences and other phrases are represented as strings of
words from X. Types represent certain sets of strings, correspond-
ing to syntactic categories. Atomic types represent some basic cate-
gories, e.g. s - the category of declarative sentences (statements), n
- the category of proper nouns, N - the category of common nouns.
Complex types represent functor categories. A string x is of type
A\B (resp. B/A) if and only if, for any y of type A, the concatena-
tion yx (resp. xy) is of type B; one says that x is a left-looking (resp.
right-looking) functor from category A to category B. It means that
we interpret \ and / as in frames P(X*); see below. Also z is of type
A - B if and only if z = xy, for some x of type A and y of type B.



6 WoiciecH Buszkowskl

So n\s represents the category of verb phrases, (n\s)/n the cate-
gory of transitive verb phrases, s/(n\s) the category of (full) noun
phrases, (s/(n\s))/N the category of determiners, and so on. Here
we ignore agreement, flexion etc. To regard these features a finer
typing is necessary. For instance, s; for statements in present tense,
s, for statements in past tense, n;, i = 1,2,3, for subjects in the
i—th person. Then, ‘likes’ is of type n3\si, ‘like’ is of types n;\s;
and ny\ s, and ‘liked’ is of types n;\s,, for i = 1,2, 3. One may use
n as a general type of subjects, assuming n; = n, fori = 1,2,3,
and similarly s as a general type of statements, assuming s; = s,
for i = 1,2. (This naturally leads to Lambek calculi with assump-
tions.) Then, ‘liked’ can be assigned type n\s,, and n\s; = n\s is
provable, by (MON-R2).

Application laws (L.1) correspond to reduction laws, underly-
ing classical categorial grammars of (Bar-Hillel et al., 1960), trac-
ing back to the type reduction procedure of (Ajdukiewicz, 1935).
If types are interpreted in semantic domains, then they express the
basic fact that a function f : A — B applied to an argument a € A
yields the value f(a) € B.

The semantical interpretation of composition laws (L2) is the
following:if f : A+ Bandg: B+ Cthengof : A — C.Insyntax
they allow some transformations of tree structures. For instance, the
sentential negation ‘not’ of type s/s can also be connected with a
noun phrase of type s/(n\s) to yield a negative noun phrase: (s/s) -
(s/(n\s)) = s/(n\s). Thus ‘not every student sings’ can be parsed
as (not ((every student) sings)) and ((not (every student)) sings).
(L3) express the same phenomenon by means of type lifting.

Type-raising laws (L4) are also referred to as Montague laws,
since in Montague Grammar the type of entities e is raised to the
type of noun phrases ((e, 1), ) in contexts like ‘John and some stu-
dent’ in order to represent the meaning of ‘and’ as the boolean meet
on noun phrase denotations. Types e, ¢ are semantical counterparts
of n, s, and (a, b) represents both a\b and b/a.

(L5) and (L6) contain product. Types of main syntactic cate-
gories are product-free, whence one cannot find any natural, simple
illustration of these laws. Types with product play an essential role
in theoretical investigations of algebraic models and in some more
advanced proof-theoretic and computational results. Let us notice
that (L5), (L6) cannot be reversed. Residuated monoids satisfying
the reverses of (L6) are precisely pregroups (algebras underlying
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pregroup grammars of (Lambek, 1999), which we discuss later on).

A model is a pair (M, ) such that M is an algebra and u is
a mapping from the set of atomic types to M, called a valuation.
Every valuation u is uniquely extended to a mapping from the set
of types to M by setting:

A B) = u(A)-u(B), u(A\B) = u(A)\u(B), u(A/B) = u(A)/u(B).

Here we assume that M admits operations -, \, /. A sequent A = B
is true in a model (M, p), if u(A) < u(B) (here < is the designated
partial ordering in M). It is valid in M, if it is true in (M, u), for
any valuation y. It is valid in a class of algebras C, if it is valid in
all algebras from C. A set of sequents @ emtails a sequent S with
respect to C, if S is true in all models (M, u) such that M € C and
all sequents from @ are true in (M, p).

NL is strongly complete with respect to the class of residu-
ated groupoids RG: for any set of sequents @ and any sequent S,
® rny S if and only if © entails S with respect to RG. Conse-
quently, NL is weakly complete with respect to RG: the sequents
provable in NL are precisely the sequents valid in RG. The ‘only
if” part of the equivalence (soundness) is easy to prove: the axioms
of NL are valid in RG, and every inference rule preserves the truth
in (M, u), for M € RG. The ‘if’ part (completeness) is proved
by a routine construction of the Lindenbaum-Tarski algebra. L is
strongly complete with respect to the class of residuated semigroups
RS. Analogous completeness theorems are true for other systems,
considered in this paper, and their routine proofs are omitted.

In linguistics, standard frames are algebras of languages. Let
¥ be an alphabet (not necessarily finite). X* (resp. £*) denotes the
set of all (resp. nonempty) finite strings on X. The empty string is
denoted by €. The powerset P(X*) (resp. P(X*)) consists of all (resp.
e—free) languages on . For Ly, L, C X*, one defines the operations
-, \, / as follows:

Ll‘Lzz{ab:aeLl,beLZ},

L\Ly={ceX": L -{c}C Ly}, Li/Lo={c€X" :{c} - L, CL}.

Here ab denotes the concatenation of strings a and b. It is easy to
show that (P(X%),C,,\,/) is a residuated semigroup. We refer to
it as the residuated semigroup P(X*). A similar construction yields
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the residuated monoid P(X*); one writes ¢ € X* in definitions of \, /.
The set {€} is the unit element for -.

In general, a monoid is an algebra (M, -, 1) such that (M, -) is a
semigroup, and 1 € M satisfies: 1 -a=a=a- 1, foralla € M, and
a residuated monoid is an algebra (M, <, -,\, /, 1) such that (M, -, 1)
is a monoid and (M, <, -, \, /) is a residuated semigroup.

In algebraic terms, £* with concatenation (resp. X* with con-
catenation and €) is the free semigroup (resp. the free monoid)
generated by X. The constructions of P(X*), P(X*) can be gener-
alized: given an arbitrary semigroup (resp. monoid) M, the residu-
ated semigroup (resp. monoid) P(M) consists of all subsets of M,
ordered by inclusion, with operations defined as above, for L, L, C
M (write ¢ € M in definitions of \, /); for the case of monoids,
{1} is the unit element of P(M), where 1 is the unit element of M.
If one starts from a groupoid M = (M, -) (resp. a unital groupoid
M = (M, 1)), then she obtains the residuated groupoid (resp.
residuated unital groupoid) P(M).

The free groupoid generated by X consists of bracketed strings
on X, i.e. the smallest set containing X and being closed under the
bracketed concatenation X, Y — (X, Y). Bracketed strings on X can
be imagined as finite binary trees whose leaves are labeled by sym-
bols from X; so we denote the set of all such strings by 7. Admit-
ting the empty tree A, we obtain the free unital groupoid generated
by X, denoted ™. One assumes (A,X) = X = (X,A), for any
X € X7, As above, one constructs the residuated groupoid P(X7)
and the residuated unital groupoid P(X7*); clearly {A} is the unit
element of the latter.

By the completeness theorems, discussed above, all sequents
provable in L are valid in residuated semigroups P(X*), and all
sequents provable in NL are valid in residuated groupoids P(X7).
Interestingly, Pentus (1995) shows that L yields all sequents valid
in the frames P(X*) (even restricted to finite alphabets); in other
words, L is weakly complete with respect to the class of frames
P(X") such that X is finite. The strong completeness fails: the as-
sumption p = p - p entails p = ¢ in the class of frames P(X*),
since u(p) = 0, for any valuation y, fulfilling u(p) C u(p) - u(p). On
the other hand, p = ¢ is not provable from p = p - p in L, since
the former is not entailed by the latter with respect to RS (consider
frames P(X")). L is strongly complete with respect to powerset al-
gebras P(M) such that M is a semigroup (Buszkowski, 1986a).
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NL is not weakly complete with respect to the class of frames
P(ZT); the sequent ((p - q)/r) - r = p - ris valid in this class, but it
is not provable in NL (it is not valid in RG; see the next section for
another proof).

NL1 and L1 are extensions of NL and L, respectively, by the
constant 1 and additional axioms:

AxD1- A=A, A= 1-A,A- 1A, I=A-1.

NL1 (resp. LL1) is strongly complete with respect to residuated uni-
tal groupoids (resp. residuated monoids).

To abbreviate notation we use A & B as a shortening of two
sequents A = Band B = A. (Ax1) can be expressed by 1 - A & A
and A-1 & A. The following sequents are provable in L1 ((L7)-(L9)
also in NL1).

L7 1=A\A, 1= A/A,

L) Ao 1\A,A o A/l,

(L9A e (A/JAN\A,A & A/(A\A),

(L10) A\A & (A\A)\(A\A), A/A & (A/A)/(A/A).

NL1 and L1 are more similar to standard logical calculi than NL
and L, since the former admit provable formulas: types A such that
1 = Ais provable, which is not the case for the latter. Some authors
regard systems with 1 as linguistically less adequate than their 1-
free companions. If adjectives are assigned type N/N, then ‘very’
can be assigned type (N/N)/(N/N). These two types are equivalent
in L1, whence ‘very’ is sent to N/N as well, which does not work.
Remember, however, that the empty string € is of type 1 (in frames
P(Z")), so ‘very’ does not belong to the category (N/N)/(N/N) (it
does not form an adjectival phrase, if applied to €). A correct typing
would be more cumbersome than for the 1-free case.

At the end of this section we briefly describe algebras, corre-
sponding to different extensions of Lambek calculi.

A bilinear algebra is a residuated monoid with an element 0,
satisfying a = (0/a)\0 = 0/(a\0), for any element a. Bilinear al-
gebras are models of Bilinear Logic BL. One defines two nega-
tions @’ = a\0, d' = 0/a; they satisfy a = (d')" = ("), a ver-
sion of the double negation law. A bilinear algebra is said to be
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cyclic, if a\O = 0/a, for any element a; so a" = d', and this ele-
ment is denoted by —a. The double negation law ——a = a holds
in cyclic bilinear algebras. Bilinear Logic amounts to Noncommu-
tative Multiplicative Linear Logic (Noncommutative MLL). The
equation (a'b')" = (a"b")" is valid in bilinear algebras; this element
is denoted by b @ a, and the operation & is called par. We use a
notation close to (Lambek, 1995); the community of Linear Logic
prefers another notation; in particular, their & amounts to our V,
and they use ® for our product. Residuals can be defined in terms
of ‘par’ and negations: a\b = a" ® b, b/a = b ® a'. Conversely,
product and par can be defined in terms of \, /, 0:

a®b=(0/a-b)\0=((0/b)/a)\0O, a®b = (0/a)\b.

Besides multiplicative operations -, ®, \, /, one also admits ad-
ditive operations A, V, interpreted as lattice meet and join. A resid-
uated lattice is a residuated monoid M such that (M, <) is a lat-
tice (one can also consider more general classes of lattice-ordered
residuated semigroups, groupoids and unital groupoids). Noncom-
mutative Multiplicative-Additive Linear Logic (Noncommutative
MALL) is the logic of residuated lattices with 0, being bilinear
algebras; this logic has been introduced and studied by Abrusci
(1991). MLL corresponds to commutative bilinear algebras, and
MALL to commutative bilinear algebras with lattice operations.
(Commutativity means the commutative law ab = ba for product;
then a\b = b/a, and this element is denoted by a — b.) Propo-
sitional Linear Logic PLL of Girard (1987) is MALL with expo-
nentials ! and ?. In algebras, !a (ofcourse a) is the greatest element
x < a such that xx = x, and ?a (whynot a) is the least element x > a
such that x @ x = x. L (resp. NL) with A,V is called Full (resp.
Nonassociative) Lambek Calculus and denoted FL (resp. FNL);
some authors assume that these systems contain 1 and 0; see e.g.
(Galatos et al., 2007). Recently, Moortgat (2009) studies symmet-
ric algebras, with ®, ® and their residuals, but without negations;
the corresponding logics are referred to as Lambek-Grishin calculi.

Types with A were used by Lambek (1961) in order to replace a
finite set of types, assigned to a word by a type grammar, with a sin-
gle type. In (Kanazawa, 1992) syntactic types are augmented with
‘features’; e.g. ‘walks’ is assigned type (np A sing)\s, ‘walk’ type
(np A pl)\s, and ‘became’ type (np\s)/(npVap), where np is the type
of noun phrase, s of sentence, ap of adjectival phrase, and sing, pl
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represent ‘singular’ and ‘plural’. Subtyping also shows some possi-
ble application of V; if sy, s, are types of sentence in present tense
and past tense, respectively, then one can define s = s V 55, whence
s1 = s and s, = s become provable.

Bilinear algebras in which ® equals @ are called pregroups (a
simpler definition is given below). Pregroups are models of Com-
pact Bilinear Logic (CBL), underlying pregroup grammars of Lam-
bek Lambek (1999).

A pregroup can be defined as an algebra (M, <, L7 1) such that
(M, <,-,1) is a partially ordered monoid, and L7 are unary opera-
tions on M, satisfying the adjoint laws:

(Ad-D) dla<1<ad, (Ad1)ad <1<da,

for all @ € M. The element a’ (resp. a") is called the left (resp. right)
adjoint of a. In any pregroup one defines a\b = a’b, b/a = bd', and
easily proves (RES). Hence any pregroup is a residuated monoid.
However, the powerset frame P(M), where M is a monid, cannot
be expanded to a pregroup, in general. Concrete pregroups can be
constructed as sets of order-preserving functions over a poset; ev-
ery pregroup is isomorphic to a pregroup of this form Buszkowski
(2001).

For any element a of a pregroup and any integer n, one defines
a™ =g, if n > 0, and a" = d'!, if n < 0, where the adjoint
operation is iterated || times; also a® = a. The following laws are
valid in pregroups: 1™ = 1, a®a™V < 1 < a™Da™, (ab)™ =
a®p™ if n is even, (ab)™ = b™Wa™, if n is odd. Also a < b iff
a™ < b™ if nis even, and a < b iff b < a™, if n is odd.

Pregroups grammars of Lambek (1999) are based on the cal-
culus of free pregroups, referred to as CBL. Let (P, <) be a finite
poset. Elements of P are treated as atomic types. Terms are expres-
sions p™ such that p € P and n is an integer. Types are finite strings
of terms. One defines a relation = on the set of types as the reflexive
and transitive closure of the relation defined by the clauses:

(CON)T, p™, p*D T7 = T, T”,
(EXP)I,I” = T, pth p™ 17,

(IND)T, p"™.T" = T, ¢"™,I", if either n is even and p < ¢, or n is
odd and g < p,
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called Contraction, Expansion and Induced Step, respectively. So
I't = I'; holds if and only if I'; reduces to I'; by a finite number of
applications of (CON), (EXP) and (IND). The completeness theo-
rem holds: I' = A if and only if f(I') < f(A), for any pregroup M
and any order preserving mapping from (P, <) to M (f can uniquely
be extended to a homomorphism of the algebra of types into M in
an obvious way; one sets f(€) = 1).

In pregroup grammars, one assigns pregroup types to expres-
sions. These types are usually direct translations of L-types, apply-
ing the above definition of \, / in pregroups. For instance, type n\s
is translated into n”s (equal to nVs), and s/(n\s) into s(n"s)!, equal
to ss'n, i.e. ss""Vn. Actually, all linguistic phenomena, described
by Lambek and his collaborators in terms of pregroup types, can
also be described in terms of L-types modulo this translation. The
advantage of pregroup grammars is their low computational com-
plexity. CBL is polynomial, while L is NP-complete. We return to
this question in Section 4. Their disadvantage seems to be the lack
of any natural relation to type-theoretic semantics and other sub-
structural logics. CBL is stronger than L1, e.g. (p-q)/r = p-(q/r),
and (p/((g/q)/p))/p = p are valid in pregroups, but not in residu-
ated monoids, whence they are provable in CBL, but not in L1. It
is not clear how this extra-power can influence syntactic analysis.
A rich collection of pregroup types of English words with a fine
analysis of syntax can be found in (Lambek, 2008). Some extended
pregroup grammars have also been studied; see e.g. (Francez and
Kaminski, 2007; Kislak-Malinowska, 2007).

We omit the algebraic forms of FL, FNL, MLL and related
systems; sequential systems of some of them will be given in the
next section.

3. Sequential systems

Gentzen-style sequential systems of L. and NL were proposed
in (Lambek, 1958, 1961). First, we present the system of L.

Greek capitals I', A, @, ... denote finite sequences of types (but
we exclude Z; it is reserved for alphabets). Sequents are of the
form I' = A. In the antecedents of sequents we write Aj,...,A,
for (A,...,A,) and I', A for the concatenation of I" and A (but we
write ['A, if the concatenation does not appear in the antecedent of
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a sequent).
L operates on sequents I' = A with I' nonempty. The axioms
are (Id), and the inference rules are:

IA,BA=C I'=>A;A=B
(L) , (R) ,
IA-B,A=C IA=>A-B

I'BBA=C, d=A AI'=B
L , (R )
(L IL®,A\B,A=C ( \)F:>A\B
INNAAA=C, =B I B=A
L , R )
(L) IA/B,®,A = C ( /)F:A/B
INAI"=>B; A=A
(CUT) b B b ,
I''AT”"=> B

where I" is nonempty in rules (R\) and (R/). Dropping this constraint
yields a stronger system L*.

The both axiomatization of L are equivalent. Let F(I') denote
the type arising from I' after one has replaced each comma by -
and introduced parentheses (their order is not essential, by associa-
tivity). Then, I' = A is provable in the sequential system of L if
and only if F(I') = A is provable in the algebraic system of L.
The ‘only if” part can be proved by induction on derivations in the
sequential system (using monotonicity rules, derivable in the alge-
braic system). For the ‘if” part, notice that ' = F(I') is provable
in the sequential system, by (R:). Then, ' = A is provable in the
sequential system if and only if F(I') = A is so (use (CUT) and
(L+)); actually, I' = A is derivable from F(I') = A in this system,
and conversely. Now, by induction on derivations in the algebraic
system, one shows that every simple sequent provable in the alge-
braic system is also provable in the sequential system, which yields
our thesis.

Hereafter sequential systems will be our standard presentations
of type logics. They can easily be related to algebraic models. An
assignment y in M can be extended for nonempty sequences I', by
setting u(I') = p(F(')). Then, I' = A is true in M under y if, and
only if, u(I') < p(A). It follows that the sequential system of L is
(strongly) complete with respect to residuated semigroups.

It is expedient to enrich L* by the constant 1 with one new ax-
iom and one new rule:

A=A

Ll) ——
( )F,I,A:A’

R1) =1,
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which yields the sequential system of L.1. We set: u(e) = u(1) =1,
for any assignment y in a residuated monoid. We also set F(e) = 1.
As above, one can show that I' = A is provable in the sequential
system of L1 if, and only if, F(I') = A is provable in the algebraic
system of L1. We show below that L* and L1 prove the same 1-free
sequents; so L* is a conservative fragment of L1, and consequently
it is complete with respect to residuated monoids (the strong com-
pleteness also holds, but the proof is more involved).

To prove that L* is a conservative fragment of L1, we need
the cut elimination theorem for L1. Let S be a sequential system
with (CUT). By S~ we denote its subsystem without (CUT). We
say that S admits cut elimination, if every sequent provable in S is
already provable in S~ (hence both systems yield the same provable
sequents). The following theorem is due to Lambek (1958).

Theorem 3.1. L admits cut elimination.

It suffices to prove that (CUT) is admissible in L™, it means:
if the premises are provable in this system, then the conclusion is
so. A direct syntactic proof proceeds by triple induction: (1) on the
cut-formula A, (2) on the derivation of the left premise, (3) on the
derivation of the right premise. Algebraic proofs can be found in
(Galatos et al., 2007). Systems L* and L1 also admit cut elimina-
tion.

Every instance of an introduction rule fulfills the following con-
ditions: (PS1) all formulas appearing in the premises are subformu-
las of formulas appearing in the conclusion, (PS2) the complexity
of the conclusion is greater than the complexity of any premise.
The complexity of a formula (sequent) can be defined as the total
number of occurrences of -, \, /, 1 in this formula (sequent). The cut
elimination theorem for L, L*, L1 has two important consequences:

Subformula Property. Every sequent provable in the system has
a (cut-free) proof which involves only subformulas of formulas ap-
pearing in this sequent.

Decidability. The provability problems for L, L*, L1 are decid-
able.

By Subformula Property L* is a conservative subsystem of L1.
Similarly, the product-free L is a conservative fragment of the full
L, and so for L*, L1.

As an illustration of the proof-search procedure, based on cut
elimination, we show that p/(g/q) = p is not provable in L (it is
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provable in L*). This sequent is not an axiom and cannot be inferred
by any introduction rule; the only candidate is (L/), but the right
premise must have the empty antecedent, which is impossible.

The sequential system of NL, due to Lambek (1961), operates
with sequents X = A such that X is a tree on the set of types, and
A is a type. By X[—] we denote a tree in which one leaf is labeled
by a special symbol ‘—=’; X[Y] denotes the tree obtained from X[—]
by inserting Y as the subtree rising from the vertex, labeled by ‘-’
in X[-]. The axioms of NL are (Id), and the inference rules are:

X[(A,B)] = C X=A;,Y=B
(L-N) X[A-B]=>C’ (R-N) X,Y)=>A-B’
X[B]=C; Y=>A A, X)=>B
LAN) X[(Y,A\B)] = C > (RAN) X=A\B"’
X[B]=C; Y=>A (X,A)= B
L/N) X[(B/A,Y)] = C > R/N) X=B/A"’
(CUTN) X[A]=B; Y=A
X[Y]= B

F(X) is the type arising from the tree X, after one has replaced
each comma by - (parentheses are saved). Again, X = A is deriv-
able from F(X) = A in the latter system, and conversely. The se-
quential system of NL is equivalent to the algebraic system of NL:
X = A is provable in the former if, and only if, F(X) = A is
provable in the latter. In models, any assignment y is extended for
trees, by setting: u(X) = w(F(X)). X = A is true in (M, p) if, and
only if, (X) < u(A). Thus, the sequential system of NL is strongly
complete with respect to residuated groupoids.

Lambek (1961) proved Theorem 3.1 for NL. Consequently, NL
possesses the subformula property and is decidable.

As an illustration, we show that ((p - q)/r,r) = p - ris not prov-
able in NL. This sequent is not an axiom. It can be the conclusion
of two rules: (1) (R-N) with premises (p - g¢)/r = pandr = r,
(2) (L/N) with premises p- g = p - r and r = r. For (1), the first
premise is not an axiom and cannot be inferred by any rule. Then,
this branch of proof-search fails. For (2), the first premise is not an
axiomy; it can be inferred by (L-N) with the premise (p,q) = p - r.
The latter sequent can be inferred by (R-N) with premises p = p
and ¢ = r. But ¢ = r is not an axiom and cannot be inferred by
any rule. Our proof search fails.
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We have shown that NL is not complete with respect to algebras
P(ZT). It is not known whether the set of sequents valid in these
algebras is recursively enumerable.

NL* admits sequents of the form A = A, written = A, and the
axioms and rules of NL, extended to empty trees X, Y. In particular,
from A = B one can infer = A\B, by (R\N), since A can be rep-
resented as (A, A). The sequential system of NL1 is NL*, enriched
with the constant 1, one new rule and one new axiom:

XAl = A

(LIN) S EYE (RIN) = 1.

(L1N) can be replaced by two rules:

X[Y]=A X[Y]= A
LIN) ————, (LINr) ——.
N =4 "N xS a
These systems admit cut elimination and are decidable. The
same holds for the sequential systems of FL and FNL, which arise
from those of L. and NL, respectively, extended for formulas with
A, V, by affixing the following rules:

@LA) I A,A= B (RA)F:A;I“:B
TAAALAS B’ T=>AAB
TAA=C:T.B.A=C I'= A

(LV) = R —

TLAVB.A=C ToA VA,
where i € {1, 2}.
X[A;]= B X=A; X=B

(LAN) ——E2 72 (RAN) 22227 2
X[A AAy] = B X>AAB
X[A] = C: X[B] = C X = A

L) XA G XBI=C -y X240

X[AVB] = C X=A VA

FL (resp. FNL) is strongly complete with respect to lattice-
ordered residuated semigroups (resp. groupoids). Admitting empty
antecedents and affixing 1 with (L 1), (R 1), for the associative case,
and (L 1N), (R IN), for the nonassociative case, one obtains systems
FL1 and FNL1 strongly complete with respect to residuated lattices
and lattice-ordered residuated unital groupoids, respectively.

One can also add constants L, T, interpreted as the lower bound
and the upper bound of the lattice. The corresponding axioms (for
the associative case) are:

AxL)T,L,I"=A, AxT) = T,
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and the nonassociative versions are similar.

The Lambek-van Benthem Calculus is L enriched with the ex-
change rule:
IA,B, " = C
ILBATI'=C’
We denote this system by L,, and similarly for other systems with
(EXC). Actually, van Benthem (1986, 1988b) offered the product-
free L, as a basic logic of semantic types. The following sequents:

(EXC)

A-Bo B-A, A\Bo B/A

are provable in this system. Therefore \,/ can be collapsed into
one operation — (implication), and van Benthem writes (a, b) for
a — b (following a standard type-theoretic notation). L, is strongly
complete with respect to commutative residuated semigroups.

Type logics can also be axiomatized as natural deduction sys-
tems (ND-systems). For every logical operation (constant), one ad-
mits two inference rules: one for introduction and one for elimina-
tion. We only present ND-systems for the (/)—fragment of L. Again
sequents are of the form I' = A with I' # €. The axioms are (Id),
the introduction rule equals (R/), but the elimination rule (E/) is
different from (L/).

I'=>B/A; A=A
I'A=B

E/D

The rule (CUT) is admissible in this system. Using this fact, one
easily shows that this system is equivalent to the sequential system.
The proof of cut elimination is simpler, since inference rules do not
introduce any new formula in the antecedents of sequents. The price
of simplification is less strength. The formula A disappears in the
conclusion of (E/), whence cut elimination does not directly yield
Subformula Property (it holds for ND-systems, which follows from
their equivalence with sequential systems, studied carefully).

Proofs in ND-systems are closely related to typed lambda-terms
by Curry-Howard isomorphism. It will not be discussed in this pa-
per. We only note that this isomorphism underlies interesting stud-
ies on semantic readings of sentences, parsed by means of Lambek
grammars (van Benthem, 1986, 1988b,a, 1991; Moortgat, 1988;
Buszkowski, 1997).
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Inference rules of ND-systems never introduce any logical op-
eration or constant in the antecedent; they only perform some alge-
braic operation on sequences of types, e.g. concatenation in (E/).
This property is crucial for labeled deductive systems (LDSs) of
Gabbay (1996), which generalize ND-systems, in a sense. LDSs
are quite natural as a machinery for formal grammars. Given typ-
ing x : Aandy : A\B, one can deduce xy : B, which resembles
the Curry-style typing in lambda calculus (here the labels x,y are
strings of words). We do not discuss this subject in more detail; see
e.g. (Buszkowski, 1997).

Using sequential systems or ND-systems for the product-free
L, L* and their versions with A (also with Exchange, Weakening
and other structural rules), one can prove their strong completeness
with respect to standard frames P(X*), P(X*) (A is interpreted as
the intersection of sets of strings). Given a set of simple sequents
®, one defines a frame M(®) whose universe is the set of product-
free types, and u(p) = {I' : ® +, I' = pj}, for any atomic type p.
By induction on A, one proves u(A) = {I' : ® +, I' = A}, for any
type A (remind that the logical operations in A are \, /, A or less).
Consequently, all sequents from © are true in (M, u). If I’ = A is
not provable from @ in £, then I' = A is not true in (M, u), which
yields the strong completeness; see (Buszkowski, 1986a)

Interestingly, the same construction and, essentially, the same
argument yield the strong completeness of (resp. Noncommutative)
MALL with respect to (resp. noncommutative) phase space mod-
els, first proved in (Girard, 1987) and (Abrusci, 1991). Studied more
carefully, these methods also yield Finite Model Property (FMP) of
Lambek calculi and exponential-free linear logics. Precisely, FMP
of MALL directly follows from FMP of the product-free L} with
A and T, since the former is faithfully interpretable in the latter,
and similar results hold for Cyclic Noncommutative MALL and
L* with O and the new rule: from I',’ T = O infer I",I’ = O0; see
(Buszkowski, 2002, 2008).

A faithful interpretation of MALL in the product-free L} with
A, T follows from the completeness of MALL with respect to phase
space models and the completeness of L} with A, T with respect to
frames P(X*). A phase space is the powerset frame P(M) over a
commutative monoid M with a distinguished subset 0" C M. A
set U C M is called a fact, if U = V — 0M, for some V C M.
The family of all facts forms a lattice-ordered commutative bilin-
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ear algebra. MALL is (strongly) complete with respect to algebras,
constructed in this way (the operations are defined in terms of —
and negation; see Section 2). It follows that I(p) = p — 0, where 0
is a distinguished atomic type, together with the appropriate defini-
tions of linear operations and constants, yields the desired interpre-
tation. The same method yields a faithful interpretation of MLL in
the product-free L (the latter system is equivalen to the logic BCI).

At the end of this section, we discuss a sequential systems of
CBL. Sequents are of the form I' = A, where I" and A are pregroup
types, i.e. finite sequences of terms. The axioms are:

1d-P) p" = p™,

and the inference rules, clearly corresponding to (CON), (EXP) and
(IND), respectively, are:

IT"=A I'=> AN
(CON-R) n) Hn+l) T » (EXP-R) n+1) () A7’
r,p"W, p 7= A I'=Ap ,p"™, A
(IND-R1) w (IND-R2) LIM
LLp™, "= A’ L= A g AN’

where either n is even and p < ¢, or n is odd and ¢ < p. The
appropriate version of the cut rule is:

I'=sA;, AT

(TRAN)
I'=1"

As shown in (Buszkowski, 2003a), this system admits cut elimina-
tion: (TRAN) is admissible in the system, devoid of this rule; also
see (Buszkowski, 2007b), where a more general system is studied.
The cut-elimination theorem for the sequential system of CBL is
equivalent to Lambek Switching Lemma (or: Lambek Normaliza-
tion Theorem), first proved in (Lambek, 1999):

Theorem 3.2. IfT" = Ais provable in CBL, then there exists a type
I such that T' = T can be proved by without (EXP), and T" = A
can be proved without (CON).

Actually, Lambek’s result is a bit stronger, but the original for-
mulation needs auxiliary rules of Generalized Contraction and Gen-
eralized Expansion, which we omit here. Theorem 3.2 directly fol-
lows from cut-elimination for the above sequential system: since
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every rule has only one premise, then a cut-free proof of ' = A
can apply all left rules before all right rules. Conversely, the cut-
elimination theorem directly follows from Theorem 3.2.

By Theorem 3.2, if ' = ¢ is provable in CBL and ¢ is a term
or the empty sequence, then I' = ¢ can be proved without (EXP)
(without (EXP-R)). This yields the polynomial time complexity of
CBL.

Although BL can be presented as a similar sequential system,
the interpretation of I' = A is different. While I is interpreted as
above, i.e. commas represent product, commas in A represent the
dual operation ‘par’. Accordingly, (TRAN) is not a correct rule of
BL. The cut-elimination theorem for BL and its versions with addi-
tives can be proved for one-side sequential systems only; see (Abr-
usci, 1991).

4. Categorial grammars

Let £ be a type logic (in the form of a sequential system). A
categorial grammar based on L (shortly: an £—grammar) is a tuple
G = (£,1,A, L) such that ¥ is a nonempty finite alphabet, / is a
mapping which assigns finite sets of types to elements of X, and
A is a designated type, called the principal type of G. Usually A
is an atomic type, often denoted by s. The mapping I is called the
initial type assignment of G (or: the type lexicon of G). Sometimes
one also specifies a finite set P of atomic types and assumes that
all types under consideration are formed out of atoms from P. In
examples we write ‘a : A in G’ for A € I(a). We also denote by X,
I, and A the alphabet (lexicon), the initial type assignment and
the principal type of G, respectively.

Let G be an L—grammar, and let x € (Zg)*, x = a;...a,. We
say that G assigns type A to x (write: x ¢ A), if there exist types
A; € l(a),i=1,...,n,suchthat Aj,...,A, = A is provable in L.
By Lg(A) we denote the set of all x € (X5)* such that x ¢ A; itis
called the category of type A determined by G. Lg(Ag) is called the
language of G and denoted L(G). Two grammars G|, G, are said
to be equivalent, if L(G,) = L(G>) (this notion can be applied to
grammars from different classes, not necessarily categorial gram-
mars). For a class of grammars G, by L(G) we denote the family of
all L(G) such that G € G. One says that G| and G, are equivalent,
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if L(G1) = L(G2).

In the above definitions we assume that types are assigned to
strings. Often it is natural to assign types to tree structures. For
instance, in nonassociative systems, e.g. NL, FNL, sequents are of
the form X = A, where X is a tree on the set of types. If X is
an ordered tree, then s(X) denotes the yield of X, i.e. the string of
all (labels of) leaves of X, ordered from the left to the right. By
‘Ay,...,A, = A is provable in NL’ we mean that there exists a
sequent X = A such that Fyy X = A and s(X) = A;...A,, and
similarly for other nonassociative systems. We can also assign types
directly to trees on X. For an NL-grammar G and Y € (Z5)7, we
write Y ¢ A, if there exists a sequent X = A suchthatry, X = A
and X arises from Y by replacing each leaf label a by some type
A € I5(a). L(T;(A) denotes the set of all Y such that Y ¢ A. The set
LE(Ag) is called the tree language of G and denoted L' (G). Two
grammars G|, G, are called T—equivalent, if LT(G,) = LT(G»).
The T—equivalence of classes of grammars is defined similarly as
above.

Let G be a categorial grammar. Ps denotes the set of atomic
types appearing in Ag and I (sometimes Pg is explicitly given in
the declaration of G). T(G) denotes the set of all types on Pg, T
the set of all types appearing in I, and T, the set of all subtypes of
types from T and Ag. (Usually Ag is a subtype of a type appearing
in I, but we also admit abnormal options.)

If Subformula Property holds for L (it is the case for all systems,
considered above), then any deduction confirming x ¢ A, where
G is an L—grammar, employs types from 7/, and subtypes of A
only. Thus, deductive parsing procedures are restricted to finitely
many types, effectively computed from G and A.

All standard type logics are decidable. Hence the languages and
the tree languages of standard categorial grammars are recursive. In
most cases the string languages are context-free. Below we discuss
this matter in more detail.

Classical categorial grammars, introduced in (Bar-Hillel ez al.,
1960), are restricted to (\, /)—types and use a simple reduction pro-
cedure, based on reduction laws:

(AP-1) A,A\B = B, (AP-2) B/A,A = B;

these sequents correspond to application laws (L1). A string of
types I reduces to A, if A results from I' by applying (AP-1), (AP-2)
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finitely many times, always to adjacent types. This rewriting system
is equivalent to the fragment of L, restricted to (Id) (for product-
free types) and rules (L\), (L/) ((CUT) is admissible). The resulting
logic is denoted AB after K. Ajdukiewicz and Y. Bar-Hillel. So clas-
sical categorial grammars are also referred to as AB-grammars. The
following theorem was proved in (Bar-Hillel ez al., 1960).

Theorem 4.1. AB-grammars are equivalent to e—free context-free
grammars.

The restriction to e—free languages is characteristic for catego-
rial grammars: neither L(G) contains €, nor L7 (G) contains A. It
seems unnatural to assume that € —¢ A if and only if = A is prov-
able in the type logic. Adopting this definition, one must choose
a principal type A such that = A is provable in order to obtain a
language containing €, e.g. A of the form B/B, but such a choice in-
fluences other strings in the language; for an L.-grammar, we obtain
xx € L(G), for any x € L(G) (by (L2)), which may be undesirable.

In the proof of Theorem 4.1, it is easy to show that every AB-
grammar is equivalent to a CFG. Actually, AB-grammars can be
treated as certain CFGs in Chomsky Normal Form: we identify
types from 7/, with nonterminals, take Ag as the start symbol, re-
verse arrows in (AP-1), (AP-2) (writing — for =) and add lexi-
cal rules A — a for A € I(a). It is more difficult to show that
any e—free CFG is equivalent to an AB--grammar. Bar-Hillel et al.
(1960) prove: every e—free CFG G| can be transformed into an
equivalent AB-grammar G, such that all types in T, are of the
form p, p/q,(p/q)/r (p,q, r are atomic) and s € Pg.

This result is equivalent to the Greibach Normal Form theo-
rem for CFGs. Precisely, it is equivalent to the statement that every
e—free CFG G, can be transformed to a CFG G, in 2-GNF. Given
an AB-grammar G, with types restricted as above, one obtains an
equivalent CFG in 2-GNF, admitting production rules: p — argq for
a:(p/q)/rinGy, p—aqfora: p/qin Gy, and p — afora: pin
G,. Conversely, given a CFG in 2-GNF, one obtains an equivalent
AB-grammar by an obvious reversal of the preceding transforma-
tion. The both grammars yield the same language, which can be
show by an easy induction on the length of strings.

AB-grammars naturally provide some tree structures on strings.
Functor-argument structures (shortly: FA-structures) on X are re-
cursively defined as follows: (i) all elements of X are (atomic) FA-
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structures, (ii) if X, Y are FA-structures, then (X, Y); and (X, Y), are
FA-structures. In (X, Y); (resp. (X, Y),), the substructure X (resp.
Y) is the functor, and the other substructure is the argument. £¥ de-
notes the set of all FA-structures on . AB-reductions assign types
to FA-structures on X, according to the following rules:

(FAl)ifa: Ain G, thena ¢ A,
(FA2)if X —>g A and Y g A\B, then (X,Y), ¢ B,
(FA3)if X g B/Aand Y 5 A, then (X, Y), —¢ B.

We define L5(A) = {X € =F : X g A} and LF(G) = LE(A);
LF(G) is called the FA-language of G. The tree language of G, de-
noted by LT (G), arises from Lf(G) by dropping functor indices in
FA-structures.

Every CFG in Chomsky Normal Form generates a tree lan-
guage: it consists of all derivation trees of the generated terminal
strings (to obtain trees in =7 one omits all labels of internal nodes).
A tree language L C X7 determines a congruence ~; on X7: X ~; Y
iff, for any context Z[—], Z[X] € L iff Z[Y] € L; an analogous rela-
tion can be defined for L C XF. It is well known that a tree language
L ¢ 27 is generated by some CFG (in Chomsky Normal Form) with
alphabet X if and only if ~; is of finite index. The tree languages of
finite index are precisely the regular tree languages.

A similar characterization of FA-languages and tree languages
of AB-grammars was obtained in (Buszkowski, 1986¢). An FA-
language L C XF is the FA-language of some AB-grammar if and
only if it satisfies the following conditions: (i) ~ is of finite in-
dex, (ii) all functor paths in FA-structures from L are of a bounded
length. A tree language L C X7 is the tree language of some AB--
grammar if, and only if, it satisfies the following conditions: (i) ~.
is of finite index, (ii) all shortest paths from an internal node to a
leaf in trees from L are of a bounded length. Consequently, although
AB-grammars are equivalent to e—free CFGs, the T-equivalence
does not hold; the tree languages of AB-grammars are a proper sub-
class of the tree languages of CFGs.

The following theorem was proved in (Buszkowski, 1986b) for
(\, /)—types and (Kandulski, 1988a,b) for types with product.

Theorem 4.2. NL-grammars are T-equivalent to AB-grammars,
whence they are equivalent to e—free CFGs.
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The proof employs a transformation of NL-derivations to a nor-
mal form: for any provable sequent A = B, there exists a sequence
(Ag,...,A,) suchthat Ag = A, A, =Band A, > A, i=1,...,n,
are certain basic provable sequents; furthermore, after a number of
sequents, reducing the size of types, there come sequents which ex-
pand the size of types.. Accordingly, given an NL-grammar G, one
obtains an equivalent AB-grammar by applying all possible reduc-
ing transformations to the type lexicon.

Later, another proof of the equivalence of NL-grammars and
CFGs was presented in (Jdager, 2004). The latter proof employs
some kind of interpolation of trees (on the set of types) by single
types, which has been refined in (Buszkowski, 2005) to prove the
polynomial time complexity and the context-freeness of NL with
assumptions (and other related systems). In the next section we dis-
cuss this method in more detail.

Another kind of interpolation was studied in (Roorda, 1991) for
L and other associative systems. Let |I', denote the number of oc-
currences of variable p in I' (as a subtype of a type in I'). Roorda
(1991) proves the following interpolation lemma: if +r, I, A, I” =
A, then there exists type D such that -, A = D, +p I, D,I” = A,
and for any variable p, |D|, is not greater than the minimum of [A|,
and [IT’A|,. In this context, D is referred to as an interpolant of A
inI[, A,” = A.Roorda’s lemma yields more than standard interpo-
lation lemmas for classical logic which only claim that any variable
occurring in D occurs in both A and I'T’A.

This interpolation lemma plays a crucial role in the proof of the
following result, due to Pentus (1993).

Theorem 4.3. L-grammars are equivalent to e—free CFGs.

This theorem confirms a conjecture, posed as early as (Bar-
Hillel et al., 1960) and attacked without success by several authors.

Pentus’s proof deeply penetrates the structure of L-derivations.
Since L is a multiplicative fragment of PLL, then two different
branches of a proof tree are completely independent. In particular,
in any proof tree one can rename the (Id)-leaves in such a way that
each variable has zero or two occurrences in the tree. Consequently,
every provable sequent is a substitution instance of a provable se-
quent in which each variable has precisely two occurrences (if any);
a provable sequent satisfying this condition is said to be thin, if ev-
ery type in this sequent contains at most one occurrence of any vari-
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able (such types are said to be thin). Roorda’s lemma applied to a
thin sequent yields a thin interpolant. This lemma also implies that
any provable sequent Ay,...,A, = A,: such that each variable
has zero or two occurrences in the sequent can be transformed into
a thin sequent By, ..., B, = B,;; such that B; is an interpolant of
A fori=1,...,n,and B, is an interpolant of A ... A,,. Let m be
the maximal number of occurrences of variables in a type B;. Using
a combinatorial argument, one shows that, for n > 2, there exists
1 <i < n—1such that B;B;;; has an interpolant D whose size is not
greater than m. Accordingly, if By, ..., B, = B, is a thin sequent
with n > 2, then one can reduce the antecedent to B, using L-
provable sequents of the form A, B = C such that the size of each
type A, B, C is bounded by m. Applying substitution, the same can
be shown for any provable sequent Ay, ..., A, = A,+1. Reductions
of this form can easily be simulated by a CFG, which yields one di-
rection of Theorem 4.3. The other direction is an easy consequence
of Theorem 4.1; by cut elimination, if +y, Aj,...,A, = s and all
types A; are as in Theorem 4.1, then any cut-free proof of this se-
quent is actually a proof in AB. Consequently, any L-grammar of
the form restricted as in Theorem 4.1 is trivially equivalent to an
AB-grammar (the latter has the same type lexicon as the former).
An analogous theorem holds for L*-grammars.

(Bulinska, 2005) shows that L-grammars with finitely many as-
sumptions of the form p = ¢ are equivalent to CFGs. It is not
known whether more general assumptions of the form py,..., p, =
p preserve context-freeness. As early as Buszkowski (1982), it was
shown that the (/)—fragment of L with finitely many assumptions
of the form p = ¢/r and p/q = r can generate arbitrary e—free re-
cursively enumerable languages. This result is easier, if types with
product are admitted; see (Buszkowski, 2005).

Kanazawa (1992) shows that FL can generate languages, which
are not context-free, e.g. the intersection of two context-free lan-
guages; it suffices to work with L with A. Interestingly, NL with
A and FNL with distribution (also with boolean or Heyting oper-
ations) remain context-free, even supplied with finitely many as-
sumptions. It can be understood better, if one remembers that regu-
lar tree languages are closed under intersection and join.

It is well known that the problem x € L(G) (the membership
problem) for CFGs in Chomsky Normal Form can be solved in time
O(kn3), where n = |x| and k is the number of production rules of G;
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a standard algorithm CYK computes all nonterminals A such that
A —¢ y for any nonempty interval y of x. Since AB-grammars
can be regarded as special CFGs in Chomsky Normal Form, the
same algorithm works for AB-grammars; now k equals the cardi-
nality of 7°(G). This algorithm, however, cannot be applied to NL-
grammars, L-grammars, and their variants. The proof of Theorem
4.2 yields, actually, an exponential transformation of the given NL-
grammar into an equivalent AB-grammar. A polynomial transfor-
mation can also be provided, whence the membership problem for
NL-grammars is polynomial (see Section 5). It is not the case for
L-grammars, if P # NP; Pentus (2006) shows the NP-completeness
of L.

Pregroup grammars are equivalent to CFGs , and the transfor-
mation is polynomial (Buszkowski, 2001; Buszkowski and Mo-
roz, 2008). By Theorem 3.2, ' = ¢ can be proved, using non-
expanding steps only, which can be simulated by a CFG. I’ = A
holds in CBL if and only if I', A" = € holds in CBL, which yields
the polynomial time decidability of CBL. The membership prob-
lem for pregroup grammars is polynomial (Oehrle, 2004; Moroz,
2010). Preller (2007) provides linear parsing algorithms for some
restricted pregroup grammars. Pregroup grammars enriched with
partial commutation go beyond the context-free world (Francez and
Kaminski, 2007).

5. Substructural logics

In this section we briefly discuss some recent results on sub-
structural logics which are based on methods elaborated for Lam-
bek calculi and categorial grammars.

We have already mentioned the fact that FMP for MALL and
Cyclic Noncommutative MALL directly follow from FMP for the
product-free L] and L* with 0 and one new rule.

A stronger version of FMP is Finite Embeddability Property
(FEP). A class of algebras C has FEP, if every finite partial sub-
algebra of an algebra from C can be embedded in a finite algebra
from C. FEP of C is equivalent to FMP of the universal theory of C.
If C is closed under finite products, then FEP of C is equivalent to
Strong Finite Model Property of C, i.e. FMP of the Horn theory of
C.
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The above notions refer to first-order logic. One consider the
first-order language corresponding to the given class of algebras
(it is determined by their similarity type). For algebras, considered
in this paper, the only designated relation symbols are < and =.
Function symbols correspond to logical operations, e.g. product,
left residual, right residual, join, meet. In this setting, types (formu-
las of type logics) correspond to terms, and sequents correspond to
atomic formulas s < ¢ (s,¢ are terms). Clearly s = ¢ can be repre-
sented as the conjunction of s < fand # < 5. If V or A are accessible,
then s < ¢ can be defined as s V ¢ = ¢, and similarly with A.

The equational theory of C is the set of equations valid in C;
without lattice operations, one considers the atomic theory of C,
i.e. the set of inequations s < ¢, valid in C. One says that C has
FMP, if the equational (atomic) theory of C has FMP, it means:
every equation (atomic formula) not valid in C is falsified in a finite
algebra from C. A Horn formula is any formula & --- &y,, =
X such that y; and y are equations (atomic formulas). The Horn
theory of C is the set of all Horn formulas valid in C. SFMP of C is
FMP of the Horn theory of C. A universal sentence is of the form
Vxi...Vx,p, where ¢ is a quantifier-free formula. The universal
theory of C is the set of all universal sentences valid in C.

Type logics, discussed in this paper, naturally correspond to
some classes of algebras; it was already discussed in Section 2.
The completeness of L. with respect to the class of residuated semi-
groups means, actually, that L. is an axiomatization of the atomic
theory of this class. The strong completeness of L with respect to
this class means that L. (with (CUT)) provides an axiomatization of
the Horn theory of this class. We know that the consequence rela-
tion @ +y, ' = A ( for finite sets @) is undecidable; this yields the
undecidability of the Horn theory of residuated semigroups (even
their reducts with / only (Buszkowski, 1982)). Similarly, the Horn
theories of residuated monoids, residuated lattices, bilinear alge-
bras and lattice-ordered bilinear algebras are undecidable; also see
(Galatos et al., 2007). Since FMP of a finitely axiomatizable class
entails the decidability of the corresponding theory, then SFMP
(FEP) cannot hold for any of this classes.

The decidability of the Horn theory of commutative bilinear al-
gebras, i.e. algebras corresponding to MLL, remains open; it is
equivalent to the decidability of the consequence relation of BCI
(use the faithful interpretation of MLL in BCI, discussed in Sec-
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tion 3). Interestingly, this problem is closely related to the still open
problem of the decidability of MELL, i.e. PLL without additives,
and to the problem L(G) = @ (the emptiness problem) for categorial
grammars based on the Lambek-van Benthem calculus. It is known
that these grammars generate at least all permutation closures of
context-free languages, but their precise power is not known. If
the emptiness problem for them is undecidable, then the conse-
quence relation of BCI is undecidable, whence MELL is undecid-
able. We use a deduction theorem for BCI: {¢q,...,¢,} Fper x iff
Fecr I = x, for some multiset " built from formulas ¢4, ..., ¥,,. We
also employ a many-valued interpretation of BCI in the Lambek-
van Benthem calculus, provided in (Buszkowski, 1996).

In opposition to the associative case, the consequence relations
of nonassociative Lambek calculi NL, NL*, NL1 are decidable;
their complexity is polynomial. The corresponding classes of alge-
bras possess FEP. Also the class of distributive lattice-ordered resid-
uated groupoids posesses FEP, which yields the decidability of the
consequence relation of FNL with distribution (of A over V, and
conversely). Categorial grammars based on these systems generate
context-free languages.

These results, solving some open problems in substructural log-
ics, have been proved by a refinement of the interpolation method
of Jiager (2004). Let X = A be a sequent of NL. Let ® be a finite
set of simple sequents (assumptions). Let 7 be a finite set of types,
containing all types appearing in X = A and ® and being closed
under subtypes. An interpolation lemma proved in (Buszkowski,
2005) states: if ® +np X[Y] = A, then there exists atype D € T
such that ® +y;, X[D] = A and ®@ Nz Y = D (here Y is a subtree
of X). Jager proves a slightly weaker form of this lemma for the
pure NL only.

This lemma directly implies that NL-grammars with assump-
tions generate context-free languages: any provable sequent X = A
can be proved by (N-CUT) from provable basic sequents B = C
and (B,C) = D such that B,C,D € T. This proof, however, is
non-constructive, since we do not know at this moment whether
the consequence relation is decidable (it is constructive for the pure
NL). Fortunately, one can construct all basic sequents (with types
from T'), provable from @, in polynomial time (Buszkowski, 2005),
which yields the polynomial complexity and a constructive proof of
the context-freeness of NL with assumptions. The context-freeness
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can also be proved for nonassociative systems with A and A, V (as-
suming distribution); see (Buszkowski and Farulewski, 2009).

To prove SFMP of the class of residuated groupoids, one uses
nuclei, i.e. some closure operators on powerset algebras; models
are families of all closed sets. The basic closed sets are of the form
{Y : @ rnp X[Y] = A} such that A and all types in X[Y] belong
to T. The closed sets are intersections of families of basic closed
sets. Using the interpolation lemma, stated above, one shows that
the family of basic closed sets is finite, whence the family of all
closed sets is finite. It yields a finite counter-model for any sequent
not provable from @. Similar arguments show FEP for other classes
of nonassociative algebras, mentioned above, and for the class of
boolean-ordered residuated groupoids and Heyting-ordered residu-
ated groupoids (Buszkowski and Farulewski, 2009). These results
can be extended for multi-modal residuated algebras; actually, they
provide a new way of proving FMP for a wide class of modal logics.

Pratt (1991) introduced action algebras, defined as residuated
monoids with V, L and Kleene star *. For an element a, a” is the
least reflexive and transitive element b such that a < b (b is reflex-
ive, if 1 < b, and transitive, if bb < b). The (-, V,", L)—reduct of
an action algebra is a Kleene algebra. Interesting examples of ac-
tion algebras are relation algebras and algebras of languages P(X*).
It is not known whether the equational theory of action algebras is
decidable. Action algebras with A are called action lattices.

Relation algebras and algebras of languages are *-continuous, it
means: a* =sup{a” : n € w}, for any element a. The complete logic
of *-continuous action algebras can be presented as the A—free frag-
ment of FL, supplied with * and the following rules:

(I A",)T" = B:n € w} IN=A;..;I,=>A

(*L) » (°R)
ILA%I" = B Iy,....I, = A*

(*L) is an infinitary rule; it has infinitely many premises I', A", " =
B (here A" stands for the sequence of n copies of A). (*R) is an
infinite collection of finitary rules, one for each n € w (forn = 0, it
is an axiom = A*). We denote this system by ACT*.

ACT* admits cut-elimination. The complexity of ACT* is H?.
It follows from a theorem on the elimination of negative occur-
rences of *: ' = B is provable if, and only if, for all n € w,
I,(I' = B) is provable, where I,(I' = B) arises from I' = B, af-
ter one has replaced each negative occurrence of A* by A" (here
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A" stands for the product of n copies of A). Since (*L) introduces
negative occurrences of *, I,(I' = B) is provable if and only if it is
provable without (*L), whence it is provable in a decidable finitary
logic; this yields the upper bound of complexity (Buszkowski and
Palka, 2008). In (Buszkowski, 2007a), the problem has been shown
H(l)—hard. Interestingly, the proof essentially uses Theorem 4.1; by
this theorem, the problem L(G) = X*, for AB-grammars G in the
restricted form, described in the theorem, is H?—complete (since an
analogous problem for CFGs is so). Using some basic properties
of FL, one shows that the latter problem reduces to the provability
problem for ACT#*. Consequently, this problem is H?—complete.
Similar results have been obtained for ACT* with A, which is the
complete logic of *-continuous action lattices and for different the-
ories of some classes of relation algebras.

It follows from these results that the equational theory of *-
continuous action algebras (lattices) is essentially stronger than that
of all action algebras (lattices); for Kleene algebras, both theories
are equal. Also, one cannot find a decidable dynamic logic, com-
plete with respect to relational frames, which constructs programs
by means of residual operations \,/ and regular operations V, -,
(such logics have been proposed by some authors to express the
weakest precondition and the strongest postcondition of a program).

Lambek calculi with Kleene star can be applied in linguistics
in order to supply categorial grammars with regular expressions;
see (Buszkowski and Palka, 2008) for examples. For effectiveness,
some restrictions are necessary; for instance, one may exclude se-
quents with negative occurrences of Kleene star.
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