
Full Nonassociative Lambek Calculus with

Distribution: Models and Grammars

Wojciech Buszkowski1,2 and Maciej Farulewski1

Faculty of Mathematics and Computer Science
Adam Mickiewicz University in Poznań1

Research Group on Mathematical Linguistics
Rovira i Virgili University in Tarragona2

Abstract

We study Nonassociative Lambek Calculus with additives ∧,∨, sat-
isfying the distributive law (Full Nonassociative Lambek Calculus with
Distribution DFNL). We prove that formal grammars based on DFNL,
also with assumptions, generate context-free languages. The proof uses
proof-theoretic tools (interpolation) and a construction of a finite model,
employed in [13] in the proof of Strong Finite Model Property of DFNL.
We obtain analogous results for different variants of DFNL, e.g. BFNL,
which admits negation ¬ such that ∧,∨,¬ satisfy the laws of boolean al-
gebra, and HFNL whose underlying lattice is a Heyting algebra. Our
proof also yields Finite Embeddability Property for boolean and Heyting
algebras, supplied with an additional residuation structure.

1 Introduction

Nonassociative Lambek Calculus NL proves the order formulas α ≤ β, valid in
residuated groupoids, i.e. ordered algebras (M, ·, \, /,≤) such that (M,≤) is a
poset, and ·, \, / are binary operations on M , satisfying the residuation law:

a · b ≤ c iff b ≤ a\c iff a ≤ c/b , (1)

for all a, b, c ∈ M . As an easy consequence of (1), we obtain:

a(a\b) ≤ b , (a/b)b ≤ a , (2)

if a ≤ b and c ≤ d then ac ≤ bd, b\c ≤ a\d, c/b ≤ d/a , (3)

for all a, b, c ∈ M . Hence every residuated groupoid is a partially ordered
groupoid, if one forgets residuals \, / (we refer to · as product).

NL was introduced by Lambek [20] as a variant of Syntactic Calculus [19],
now called Associative Lambek Calculus L, which yields the order formulas

1



valid in residuated semigroups (· is associative). Both are standard type logics
for categorial grammars [3, 10, 23, 24]. While L is appropriate for expressions
in the form of strings, NL corresponds to tree structures. The cut-elimination
theorem holds for NL and L, and it yields the decidability of these systems
[19, 20].

NL and L are examples of substructural logics, i.e. non-classical logics whose
sequent systems lack some structural rules (Weakening, Contraction, Exchange);
see [14]. Besides multiplicatives ·, \, /, substructural logics usually admit addi-
tives ∧,∨. The corresponding algebras are residuated lattices (M,∧,∨, ·, \, /, 1):
here (M,∧,∨) is a lattice, (M, ·, 1) is a monoid (i.e. a semigroup with 1),
and (1) holds. For the nonassociative case, monoids are replaced by groupoids
or unital groupoids (i.e. groupoids with 1); the resulting algebras are called
lattice-ordered residuated (unital) groupoids. An algebra of that kind is said
to be distributive, if its lattice reduct is distributive. The complete logic for
residuated lattices is Full Lambek Calculus FL [14]. Its sequent system ad-
mits cut-elimination; FL is decidable [26]. Residuated lattices form a variety,
and so for lattice-ordered residuated groupoids, but it is not true for residuated
semigroups, nor residuated groupoids [14].

Categorial grammars based on NL generate precisely the ε−free context-free
languages [7, 18]. Pentus [27] proves the same for L. Using FL, even without
∨, one can generate languages which are not context-free, i.e. meets of two
context-free languages [17]. This also holds for FL with distribution, since it
is conservative over its ∨−free fragment. The provability problem for L is NP-
complete [28]; for FL, the upper bound is P-SPACE.

Full Nonassociative Lambek Calculus FNL is the complete logic of lattice-
ordered residuated groupoids. We present it in the form of a sequent system.
The cut-elimination theorem holds for this system [14]. It is not useful for our
purposes, since we consider the consequence relation of FNL which requires
the cut rule to be complete with respect to algebraic models. Furthermore, our
main issue is DFNL, and the distributive law is affixed to FNL as a new axiom;
the cut rule is necessary in DFNL.

We prove that (in opposition to FL) categorial grammars based on DFNL
generate context-free languages, and it remains true if one adds an arbitrary
finite set of assumptions to DFNL. For NL, an analogous result has been
proved in [11]. The latter paper also proves the polytime decidability of the
consequence relation of NL ([15] makes it for provability in NL), but it cannot
be shown in the presence of additives. The consequence relation of DFNL is
decidable, which follows from Strong Finite Model Property (SFMP), proved in
[13], employing some ideas of [25, 2, 11]. (The consequence relations for L, FL
are undecidable [6, 14].)

The construction of a finite model, used in the proof of SFMP for DFNL in
[13], will also be employed here (in a modified form) in order to prove an inter-
polation lemma, needed for context-freeness. Our methods can be extended to
multi-modal variants of DFNL which admit several ‘product’ operations (of ar-
bitrary arity) and the corresponding residual operations. Without additives, this
multi-modal framework was presented in [8, 10, 11]. (It is also naturally related

2



to multi-modal extensions of Lambek Calculus, studied in e.g. [12, 23, 24].)
This leads us to the proof of SFMP for BFNL, which is the complete logic
of boolean-ordered residuated groupoids, and the context-freeness of the cor-
responding grammars, and the same holds for HFNL, which is the complete
logic of Heyting algebras with an additional residuation structure. These results
can be generalized to multi-modal systems. All classes of algebras, considered
here, are closed under products (and contain the trivial algebra, i.e. the empty
product), and consequently, SFMP implies Finite Embeddability Property: ev-
ery finite partial subalgebra of an algebra from this class can be embedded in a
finite algebra from this class (this is equivalent to FMP of the universal theory
of the class of algebras).

Distribution is essential for the construction of a finite model in the proof
of SFMP and the finiteness of the set of possible interpolants in our interpo-
lation lemma. So, our results cannot easily be adapted for systems without
distribution.

(External) consequence relations for substructural logics have been studied in
different contexts; see e.g. [1, 5, 14]. Put it differently, one studies logics enriched
with (finitely many) assumptions. Assumptions are sequents (not closed under
substitution) added to axioms of the system (with the cut rule). Categorial
grammars are usually required to be lexical in the sense that the logic is common
for all languages and all information on the particular language is contained in
the type lexicon. But, there are approaches allowing non-lexical assumptions,
which results in a more efficient description of the language and an increase of
generative power [6, 10, 21, 22]. Let us emphasize that our results on context-
freeness are new even for pure logics DFNL, BFNL and their variants, and
assumptions do not change anything essential in proofs.

2 Restricted interpolation

We admit a denumerable set of variables p, q, r, . . .. Formulas are built from
variables by means of ·, \, /,∧,∨. Formula structures (shortly: structures) are
built from formulas according to the rule: if X, Y are structures then (X, Y )
is a structure. We denote arbitrary formulas by α, β, γ, . . . and structures by
X, Y, Z. X[Y ] denotes a structure X with a designated substructure Y ; in this
context, X[Z] denotes the substitution of Z for Y in X.

Sequents are of the form X ⇒ α. FNL assumes the following axioms and
inference rules:

(Id) α ⇒ α ,

(·L)
X[(α, β)] ⇒ γ

X[α · β] ⇒ γ
, (·R)

X ⇒ α; Y ⇒ β

(X, Y ) ⇒ α · β
,

(\L)
X[β] ⇒ γ; Y ⇒ α

X[(Y, α\β)] ⇒ γ
, (\R)

(α, X) ⇒ β

X ⇒ α\β
,

(/L)
X[β] ⇒ γ; Y ⇒ α

X[(β/α, Y )] ⇒ γ
, (/R)

(X, α) ⇒ β

X ⇒ β/α
,

3



(∧L)
X[αi] ⇒ β

X[α1 ∧ α2] ⇒ β
, (∧R)

X ⇒ α; X ⇒ β

X ⇒ α ∧ β
,

(∨L)
X[α] ⇒ γ; X[β] ⇒ γ

X[α ∨ β] ⇒ γ
, (∨R)

X ⇒ αi

X ⇒ α1 ∨ α2
,

(CUT)
X[α] ⇒ β; Y ⇒ α

X[Y ] ⇒ β
.

In (∧L) and (∨R), the subscript i equals 1 or 2. The latter rules and (·L),
(\R), (/R) have one premise; the remaining rules have two premises, separated
by semicolon. DFNL admits the additional axiom scheme:

(D) α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ) .

(CUT) can be eliminated from FNL but not from DFNL. Let Φ be a set
of sequents. We write Φ ` X ⇒ α if X ⇒ α is deducible from Φ in DFNL.
By F (X) we denote the formula arising from X after one has replaced each
comma by ·. By (·L) and (Id), (·R), (CUT), X ⇒ α and F (X) ⇒ α are
mutually deducible. Consequently, without loss of generality we can assume
that Φ consists of sequents of the form α ⇒ β (simple sequents). In models,
⇒ is interpreted as ≤ and, by definition, an assignment f satisfies X ⇒ α iff
f(F (X)) ≤ f(α).

In what follows, we always assume that Φ is a finite set of simple sequents.
T denotes a set of formulas. By a T−sequent we mean a sequent such that
all formulas occurring in it belong to T . We write X ⇒T α if X ⇒ α has a
deduction from Φ in DFNL which consists of T−sequents only (then, X ⇒ α
must be a T−sequent). The following lemma is proved for DFNL but the same
proof works for FNL.

Lemma 1. Let T be closed under ∧,∨. Let X[Y ] ⇒T γ. Then, there exists
δ ∈ T such that X[δ] ⇒T γ and Y ⇒T δ.

Proof. δ is called an interpolant of Y in X[Y ] ⇒ γ. The proof proceeds by
induction on T−deductions of X[Y ] ⇒ γ from Φ. The case of axioms and
assumptions is easy; they are simple sequents α ⇒ γ, so Y = α and δ = α.

Let X[Y ] ⇒ γ be the conclusion of a rule. (CUT) is easy. If Y comes from
one premise of (CUT), then we take an interpolant from this premise. Otherwise
Y must contain Z, where the premises are X[α] ⇒ γ, Z ⇒ α. So, Y = U [Z],
and it comes from U [α] in the first premise. Then, an interpolant δ of U [α] in
this premise is also an interpolant of Y in the conclusion, by (CUT).

Let us consider other rules. First, we assume that Y does not contain the
formula, introduced by the rule (the active formula). If Y comes from exactly
one premise of the rule, then one takes an interpolant from this premise. Let us
consider (∧R). The premises are X[Y ] ⇒ α, X[Y ] ⇒ β, and the conclusion is
X[Y ] ⇒ α∧β. By the induction hypothesis, there are interpolants δ of Y in the
first premise and δ′ of Y in the second one. We have X[δ] ⇒T α, X[δ′] ⇒T β,
Y ⇒T δ, Y ⇒T δ′. Then, δ∧δ′ is an interpolant of Y in the conclusion, by (∧L),
(∧R). Let us consider (∨L). The premises are X[α][Y ] ⇒ γ, X[β][Y ] ⇒ γ, and

4



the conclusion is X[α ∨ β][Y ] ⇒ γ, where Y does not contain α ∨ β. As above,
there are interpolants δ, δ′ of Y in the premises. Again δ ∧ δ′ is an interpolant
of Y in the conclusion, by (∧L), (∨L) and (∧R). For (·R) with premises U ⇒ α,
V ⇒ β and conclusion (U, V ) ⇒ α · β, if Y = (U, V ), then we take δ = α · β.

Second, we assume that Y contains the active formula (so, the rule must
be an L-rule). If Y is a single formula, then we take δ = Y . Assume that Y
is not a formula. For (·L), (∧L), we take an interpolant of Y ′ in the premise,
where Y ′ is the natural source of Y . For (\L) with premises X[β] ⇒ γ, Z ⇒ α
and conclusion X[(Z,α\β)] ⇒ γ, we consider the source Y ′ of Y (Y ′ occurs in
X[β] and contains β). Then, Y arises from Y ′ by substituting (Z,α\β) for β.
Hence, an interpolant of Y ′ in the first premise is also an interpolant of Y in
the conclusion, by (\L). The case of (/L) is similar. The final case is (∨L) with
premises Z[U [α]] ⇒ γ, Z[U [β]] ⇒ γ and conclusion Z[U [α ∨ β]] ⇒ γ, where
Y = U [α ∨ β]. Let δ be an interpolant of U [α] in the first premise and δ′ be an
interpolant of U [β] in the second premise. Then, δ ∨ δ′ is an interpolant of Y
in the conclusion, by (∨L), (∨R).

3 Finite models and interpolation

We prove an (extended) subformula property and an interpolation lemma for the
deducibility relation ` in DFNL. We need some constructions of lattice-ordered
residuated groupoids.

Let (M, ·) be a groupoid. On the powerset P (M) one defines operations:
U · V = {ab : a ∈ U, b ∈ V }, U\V = {c ∈ M : U · {c} ⊆ V }, U/V = {c ∈ M :
{c} ·V ⊆ U}, U ∨V = U ∪V , U ∧V = U ∩V . P (M) with these operations is a
distributive lattice-ordered groupoid (it is a complete lattice). The order is ⊆.

An operator C : P (M) 7→ P (M) is called a closure operator on (M, ·),
if it satisfies the following conditions: (C1) U ⊆ C(U), (C2) if U ⊆ V then
C(U) ⊆ C(V ), (C3) C(C(U)) ⊆ U , (C4) C(U) · C(V ) ⊆ C(U · V ), for all
U, V ⊆ M [14]. A set U ⊆ M is said to be closed, if C(U) = U . By C(M, ·) we
denote the family of all closed subsets of M . Operations on C(M, ·) are defined
as follows: U⊗V = C(U ·V ), U\V , U/V and U∧V as above, U∨V = C(U∪V ).
(The product operation in C(M, ·) is denoted by ⊗ to avoid collision with · in
P (M).) It is known that C(M, ·) with these operations is a complete lattice-
ordered residuated groupoid [14]; it need not be distributive. The order is ⊆.

(C4) is essential in the proof that C(M, ·) is closed under \, /. Actually, if U
is closed, then V \U and U/V are closed, for any V ⊆ M . Let us consider U/V .
Since (2) hold in P (M), then (U/V ) · V ⊆ U . We get C(U/V ) · V ⊆ C(U/V ) ·
C(V ) ⊆ C((U/V ) · V ) ⊆ C(U) = U , and consequently, C(U/V ) ⊆ U/V , by (1)
for P (M). The reader is invited to prove that (1) holds in C(M, ·) and C(U∪V )
is the join of U, V in C(M, ·).

We consider extended formula structures which may contain a special atomic
substructure ◦. Contexts are extended structures which contain a unique oc-
currence of ◦. If Z[◦] is a context and X is a structure, then Z[X] denotes the
substitution of X for ◦ in Z[◦].

5



Let T be a nonempty set of formulas. By T ∗ we denote the set of all struc-
tures formed out of formulas from T . T ∗[◦] denotes the set of all contexts whose
all atomic substructures different from ◦ belong to T .

T ∗ is a (free) groupoid with the operation X · Y = (X, Y ). Hence P (T ∗)
is a lattice-ordered residuated groupoid with operations defined as above. For
Z[◦] ∈ T ∗[◦] and α ∈ T , we define a set:

[Z[◦], α] = {X ∈ T ∗ : Z[X] ⇒T α}. (4)

The family of all sets [Z[◦], α], defined in this way, is denoted B(T ). An
operator CT : P (T ∗) 7→ P (T ∗) is defined as follows:

CT (U) =
⋂
{[Z[◦], α] ∈ B(T ) : U ⊆ [Z[◦], α]} , (5)

for U ⊆ T ∗. It is easy to see that CT satisfies (C1), (C2), (C3). We prove (C4).
Let U, V ⊆ T ∗ and X ∈ CT (U), Y ∈ CT (V ). We show (X, Y ) ∈ CT (U · V ).
Let [Z[◦], α] ∈ B(T ) be such that U · V ⊆ [Z[◦], α]. For any X ′ ∈ U , Y ′ ∈
V , (X ′, Y ′) ∈ [Z[◦], α], whence Z[(X ′, Y ′)] ⇒T α. So, U ⊆ [Z[(◦, Y ′)], α],
whence CT (U) ⊆ [Z[(◦, Y ′)], α], by (5), and the latter holds for any Y ′ ∈ V .
Then, Z[(X, Y ′)] ⇒T α, for any Y ′ ∈ V . We get V ⊆ [Z[(X, ◦)], α], which
yields CT (V ) ⊆ [Z[(X, ◦)], α], by (5). Consequently, Z[(X, Y )] ⇒T α, whence
(X, Y ) ∈ [Z[◦], α] (see [25, 2, 14, 13] for similar arguments).

We have shown that CT is a closure operator on (T ∗, ·). We consider the
algebra CT (T ∗, ·), further denoted by M(T,Φ). Clearly, all sets in B(T ) are
closed under CT . We define:

[α] = [◦, α] = {X ∈ T ∗;X ⇒T α} . (6)

For α ∈ T , [α] ∈ B(T ). The following equations are true in M(T,Φ) provided
that all formulas appearing in them belong to T .

[α]⊗ [β] = [α · β], [α]\[β] = [α\β], [α]/[β] = [α/β] , (7)

[α] ∨ [β] = [α ∨ β], [α] ∧ [β] = [α ∧ β] . (8)

We prove the first equation (7). If X ⇒T α and Y ⇒T β then (X, Y ) ⇒T

α·β, by (·R). Consequently, [α]·[β] ⊆ [α·β]. Then [α]⊗[β] = CT ([α]·[β]) ⊆ [α·β],
by (C2), (C3). We prove the converse inclusion. Let [Z[◦], γ] ∈ B(T ) be such
that [α] · [β] ⊆ [Z[◦], γ]. By (Id), α ∈ [α], β ∈ [β], whence Z[(α, β)] ⇒T γ.
Then, Z[α ·β] ⇒T γ, by (·R). Hence, if X ∈ [α ·β] then Z[X] ⇒T γ, by (CUT),
which yields X ∈ [Z[◦], γ]. We have shown [α · β] ⊆ CT ([α] · [β]).

We prove the second equation (7). Let X ∈ [α]\[β]. Since α ∈ [α], then
(α, X) ∈ [β]. Hence (α, X) ⇒T β, which yields X ⇒T α\β, by (\R). We have
shown ⊆. To prove the converse inclusion it suffices to show [α] · [α\β] ⊆ [β].
If X ⇒T α and Y ⇒T α\β, then (X, Y ) ⇒T β, since (α, α\β) ⇒T β, by (Id),
(\L), and one applies (CUT). The proof of the third equation (7) is similar.
Proofs of (8) are left to the reader.

6



We say that formulas α, β ∈ T are T−equivalent, if α ⇒T β and β ⇒T α.
By (Id), (CUT), T−equivalence is an equivalence relation. By T we denote the
smallest set of formulas which contains all formulas from T and is closed under
subformulas and ∧,∨. If T is closed under subformulas, then T is the closure of
T under ∧,∨.

Lemma 2. If T is a finite set of formulas, then T is finite up to T−equivalence.

Proof. If T is finite, then the set T ′ of subformulas of formulas from T is also
finite. T is the closure of T ′ under ∧,∨. The converse of (D) (α∧β)∨ (α∧γ) ⇒
α∧ (β∨γ) is provable in FNL (it is valid in all lattices); if α, β, γ ∈ T , then the
proof uses T−sequents only. Consequently, for α, β, γ ∈ T , both sides of (D) are
T−equivalent. It follows that every formula from T is T−equivalent to a finite
disjunction of finite conjunctions of formulas from T ′. If one omits repetitions,
then there are only finitely many formulas of the latter form.

Recall that an assignment in a model M is a homomorphism from the formula
algebra into M .

Lemma 3. Let T be a nonempty, finite set of formulas. Then, M(T , Φ) is a
finite distributive lattice-ordered residuated groupoid. For any assignment f in
M(T , Φ) such that f(p) = [p], for any p ∈ T , and any T−sequent X ⇒ α, f
satisfies X ⇒ α in M(T , Φ) if and only if X ⇒T α.

Proof. As shown above, M(T , Φ) is a lattice-ordered residuated groupoid. We
prove the second part of the lemma. Let f satisfy f(p) = [p], for any variable
p ∈ T . Using (7), (8), one proves f(α) = [α], for all α ∈ T , by easy formula
induction.

Assume that f satisfies the T−sequent X ⇒ α. For any formula β appearing
in X, we have β ∈ [β] = f(β), whence X ∈ f(F (X)). Since f(F (X)) ⊆ f(α),
then X ∈ f(α) = [α]. Thus X ⇒T α. Assume X ⇒T α. Then, there exists
a T−deduction of X ⇒ α from Φ in DFNL. By induction on this deduction,
we prove that f satisfies X ⇒ α in M(T , Φ). f obviously satisfies axioms
(Id). Assumptions from Φ and instances of (D), restricted to T−sequents, are
of the form β ⇒ γ, where β, γ ∈ T . Since β ⇒T γ, then [β] ⊆ [γ], by (CUT),
which yields f(β) ⊆ f(γ). The rules of FNL are sound for any assignment in a
lattice-ordered residuated groupoid, which finishes this part of proof.

Let R be a selector of the family of equivalence classes of T−equivalence (R
chooses one formula from each equivalence class). By Lemma 2, R is a nonempty
finite subset of T . We show that every nontrivial (i.e. nonempty and not total)
closed subset of T

∗
equals [α], for some α ∈ R. Let U be nontrivial and closed..

Let X ∈ U . There exists a set [Z[◦], β] ∈ B(T ) such that U ⊆ [Z[◦], β]. So,
Z[X] ⇒T β. By Lemma 1, there exists δ ∈ T such that Z[δ] ⇒T β and X ⇒T δ.
We get X ∈ [δ] and [δ] ⊆ [Z[◦], β], by (CUT). Clearly we can take δ ∈ R. We can
find such a formula δ ∈ R, for any set [Z[◦], β] ∈ B(T ) such that U ⊆ [Z[◦], β].
Thus, we obtain a nonempty finite set S ⊆ R such that, for any [Z[◦], β] ∈ B(T )
such that U ⊆ [Z[◦], β], there exists δ ∈ S such that X ∈ [δ] and [δ] ⊆ [Z[◦], β].
Let γX be the conjunction of all formulas from S. By (8), (C3) and (6), X ∈ [γX ]

7



and [γX ] ⊆ U . Again we can replace γX by a T−equivalent formula from R.
So, we stipulate γX ∈ R. Let α be the disjunction of all formulas γX , for X ∈ U
(there are only finitely many different formulas of that kind). By (8), [α] ⊆ U
and, evidently, U ⊆ [α]. We can stipulate α ∈ R.

It follows that M(T , Φ) is finite. We prove that it is distributive. It suffices
to prove U ∧ (V ∨ W ) ⊆ (U ∧ V ) ∨ (U ∧ W ), for any closed sets U, V,W .
This inclusion is true, if at least one of the sets U, V,W is empty or total, since
M(T , Φ) is a lattice. So, assume U, V,W be nontrivial. By the above paragraph,
U = [α], V = [β], W = [γ], for some α, β, γ ∈ R. Then, the inclusion follows
from (8) and the fact that [α ∧ (β ∨ γ)] ⊆ [(α ∧ β) ∨ (α ∧ γ)].

Notice that Lemma 3 implies the decidability of `, since it yields SFMP: if
Φ ` X ⇒ α does not hold, then there exist a finite model M and an assignment
f in M such that f satisfies Φ but does not satisfy X ⇒ α. We are ready to
prove an extended subformula property and an interpolation lemma for DFNL.

Lemma 4. Let T be a finite set of formulas, containing all formulas appearing
in X ⇒ α and Φ. If Φ ` X ⇒ α then X ⇒T α.

Proof. Let f be an asignment in M(T , Φ), satisfying f(p) = [p], for any variable
p ∈ T . Let β ⇒ γ be a sequent from Φ. Then β ⇒T γ, which yields f(β) ⊆ f(γ),
by Lemma 3. So, f satisfies all sequents from Φ.

Assume Φ ` X ⇒ α. Since DFNL is strongly sound with respect to distribu-
tive lattice-ordered residuated groupoids, then f satisfies X ⇒ α. Consequently,
X ⇒T α, by Lemma 3.

Lemma 5. Let T be a finite set of formulas, containing all formulas appearing
in X[Y ] ⇒ α and Φ. If Φ ` X[Y ] ⇒ α then there exists δ ∈ T such that
Φ ` X[δ] ⇒ α and Φ ` Y ⇒ δ.

Proof. Assume Φ ` X[Y ] ⇒ α. By Lemma 4, X[Y ] ⇒T α. Apply Lemma
1.

Lemma 3 except for the finiteness and distributivity of M(T , Φ) and Lemmas
4 and 5 also hold for FNL. For NL, Lemma 4 and Lemma 5 hold with T defined
as the closure of T under subformulas [11] (for pure NL, a weaker form of the
latter lemma was proved in [16]).

4 Categorial grammars based on DFNL

A categorial grammar based on a logic L (presented as a sequent system) is
defined as a tuple G = (Σ, I, α, Φ) such that Σ is a finite alphabet, I is a
nonempty finite relation between elements of Σ and formulas of L, α is a formula
of L, and Φ is a finite set of sequents of L. Elements of Σ are usually interpreted
as words from the lexicon of a language and strings on Σ as phrases. Formulas
of L are called types. I assigns finitely many types to each word from Σ. α is a
designated type; often one takes a designated variable s (the type of sentences).

8



L is the logic of type change and composition. Φ is a finite set of assumptions
added to L.

Our logic L is DFNL. Let G = (Σ, I, α, Φ) be a categorial grammar. By
T (G) we denote the set of all types appearing in the range of I. Let T be the
smallest set containing T (G), all types from Φ and α. For any type β, we define
L(G, β) = {X ∈ T

∗
: Φ ` X ⇒ β}. Elements of T

∗
can be seen as finite

binary trees whose leaves are labeled by types from T . The tree language of
G, denoted by Lt(G), consists of all trees which can be obtained from trees in
L(G, α) ∩ T (G)∗ by replacing each type γ by some a ∈ Σ such that (a, γ) ∈ I.
The language of G, denoted by L(G), is the yield of Lt(G).

Theorem 1. L(G) is a context-free language, for any categorial grammar G
based on DFNL.

Proof. Fix G = (Σ, I, α, Φ). We define a context-free grammar G′ such that
L(G′) = L(G). Let T be defined as above. By Lemma 2, T is finite up to
T−equivalence. We choose a set R ⊆ T which contains one formula from each
equivalence class. For β ∈ T , by r(β) we denote the unique type from R which
is T−equivalent to β.

G′ is defined as follows. The terminal alphabet is Σ. The nonterminal
alphabet is R. Production rules are: (R1) β 7→ γ, for β, γ ∈ R such that
Φ ` γ ⇒ β, (R2) β 7→ γδ, for β, γ, δ ∈ R such that Φ ` (γ, δ) ⇒ β, (R3)
r(β) 7→ a, for β ∈ T (G), a ∈ Σ such that (a, β) ∈ I. The initial symbol is r(α).

Every derivation tree in G′ can be treated as a deduction from Φ in DFNL
which is based on deducible sequents appearing in (R1), (R2) and (CUT). Then,
L(G′) ⊆ L(G). The converse inclusion follows from Lemma 5. Let x ∈ L(G).
Then, x is the yield of some Y ∈ Lt(G). There exists X ∈ L(G, α) such that Y is
obtained from X in the way described above. Let r(X) denote the tree resulting
from X after one has replaced each type β by r(β). Clearly, if X ∈ L(G, γ), then
r(X) ∈ L(G, r(γ). It suffices to prove that, for any γ ∈ T and any X ∈ L(G, γ),
there exists a derivation of r(X) from r(γ) (as a derivation tree) in G′. We
proceed by induction on the number of commas in X. Let X ∈ L(G, γ) be a
single type, say, X = β. Then, Φ ` β ⇒ γ, whence Φ ` r(β) ⇒ r(γ). Then,
r(X) = r(β) is derivable from r(γ), by (R1). Let X ∈ L(G, γ) contain a comma.
Then, X must contain a substructure of the form (δ1, δ2), where δi ∈ T . We
write X = Z[(δ1, δ2)]. By Lemma 5, there exists δ ∈ T such that Φ ` Z[δ] ⇒ γ
and (δ1, δ2) ⇒ δ. By the induction hypothesis, r(Z[δ]) can be derived from r(γ)
in G′. Then, r(X) can be derived from r(γ), by (R2).

It has been shown in [7, 18] that every ε−free context-free language can
be generated by a categorial grammar based on NL which uses very restricted
types only: p, p\q, p\(q\r), where p, q, r are variables; the designated type is
also a variable s. Now, we use the fact that DFNL is conservative over NL,
since every residuated groupoid can be embedded into a powerset algebra over
a groupoid [10]. Accordingly, every ε−free context-free language is generated
by some categorial grammar based on DFNL.

9



5 Variants

The methods of this paper cannot be applied to associative systems L, FL,
FL+D. Consequence relations for these systems are undecidable; see [6, 11, 14].
Hence no analogue of Lemma 3 can be true. It is also easy to find counterex-
amples falsifying Lemmas 1, 4 and 5. Analogues of Theorem 1 are false (see
Introduction).

They can be applied to several other nonassociative systems. The first ex-
ample is DFNLe, i.e. DFNL with the exchange rule:

(EXC)
X[(Y, Z)] ⇒ α

X[(Z, Y )] ⇒ α
.

DFNLe is complete with respect to distributive lattice-ordered commutative
residuated groupoids (ab = ba, for all elements a, b). Then, a\b = b/a, and one
considers one residual only, denoted a → b. All results from sections 2, 3 and
4 can be proved for DFNLe, and proofs are similar as above. Exception: not
every ε−free context-free language can be generated by a categorial grammar
based on DFNLe.

One can add the multiplicative constant 1, interpreted as the unit in unital
groupoids. We need the axiom (1R): ⇒ 1, and the rule:

(1Ll)
X[Y ] ⇒ α

X[(1, Y )] ⇒ α
, (1Lr)

X[Y ] ⇒ α

X[(Y, 1)] ⇒ α
.

The empty antecedent is understood as the empty structure Λ, and one admits
(Λ, X) = X, (X, Λ) = X in metatheory. Again, there are no problems with
adapting our results for DFNL with 1 and DFNLe with 1. T contains 1, for
any set T . 1 is an interpolant of Λ. Models are unital groupoids. f(Λ) = 1, for
any assignment f . 1C = C(1) is the unit of C[M].

One can also add the weakening rule:

(WEA)
X[Λ] ⇒ α

X[Y ] ⇒ α
.

Models of the resulting system are integral lattice-ordered residuated groupoids
(1 is the upper bound). Applying methods of this paper, one can find new
proofs of some results of [5].

Additive constants ⊥ and > can also be added, with axioms:

(⊥L) X[⊥] ⇒ α , (>R) X ⇒ > .

They are interpreted as the lower bound and the upper bound, respectively, of
the lattice. T must contain these constants. In the proof of (an analogue of)
Lemma 1, one must consider new cases: X[Y ] ⇒ α is an axiom (⊥L) or (>R).
For the first case, if Y contains ⊥ then ⊥ is an interpolant of Y ; otherwise, > is
an interpolant of Y . For the second case, > is an interpolant of Y . In the proof
of Lemma 3, M(T , Φ) interprets ⊥ as CT (∅) and > as T

∗
.

10



Instead of one binary product · one may admit a finite number of operations
o, o′, . . . of arbitrary arity: nullary, unary, binary, ternary and so on. Each
n−ary operation o is associated with n residual operations oi, for i = 1, . . . , n
(nullary operations have no residuals). In models, one assumes the (generalized)
residuation law:

o(a1, . . . , an) ≤ b iff ai ≤ oi(a1, . . . , b, . . . , an) , (9)

for all i = 1, . . . , n (on the right-hand side, b is the i−th argument of oi). The
corresponding formal system, called Generalized Lambek Calculus GLC, was
presented in [11]. To each n−ary operation o one attributes a structure con-
structor (X1, . . . , Xn)o, and formula structures can contain different structure
constructors. Unary operations can be identified with (different) unary modal-
ities. GLC represents a multi-modal variant of NL.

(oL)
X[(α1, . . . , αn)o] ⇒ γ

X[o(α1, . . . , αn)] ⇒ γ
,

(oR)
X1 ⇒ α1; . . . ;Xn ⇒ αn

(X1, . . . , Xn)o ⇒ o(α1, . . . , αn)
,

(o/iL)
X[αi] ⇒ γ;Y1 ⇒ α1; . . . ;Yn ⇒ αn

X[(Y1, . . . , (o/i)(α1, . . . , αn), . . . , Yn)o] ⇒ γ
,

(o/iR)
(α1, . . . , X, . . . , αn)o ⇒ αi

X ⇒ (o/i)(α1, . . . , αn)
.

The system contains (CUT). Rules (oL), (oR) are also admitted for nullary
operation symbols o. Rules ((o/iL), (o/iR) are admitted for non-nullary op-
eration symbols only. In (o/iL), the sequent Yi ⇒ αi does not appear among
premises. In the premise of (o/iR), X is the i−th argument of (−, . . . ,−)o.

The consequence relation of GLC is polytime, and the corresponding cat-
egorial grammars generate ε−free context-free languages [11]. All results of
this paper can easily be adapted for GLC with ∧,∨ and distribution (and,
possibly, (EXC) for some binary operations, multiplicative units for them, and
⊥,>). In powerset algebras, one defines o(U1, . . . , Un) as the set of all ele-
ments o(a1, . . . , an) such that ai ∈ Ui, for i = 1, . . . , n. (C4) takes the form:
o(C(U1), . . . , C(Un)) ⊆ C(o(U1, . . . , Un)). Each operation o in the powerset al-
gebra induces an operation on closed sets: oC(U1, . . . , Un) = C(o(U1, . . . , Un)).

At the end, we consider DFNL with ⊥,> and negation ¬, satisfying the
laws of boolean algebra. To axioms for ⊥ and > we add:

(¬1) α ∧ ¬α ⇒ ⊥ , (¬2) > ⇒ α ∨ ¬α .

Clearly the resulting system, denoted BFNL, is strongly complete with respect
to boolean-ordered residuated groupoids. It provides a solution of the problem
of axiomatizing Lambek calculus with classical negation, discussed in [9]; a non-
classical negation in Lambek calculus has been studied in [30].

11



The consequence relation for this system is decidable, and the corresponding
categorial grammars generate ε−free context-free languages. The proofs are
similar to those for DFNL. One assumes that T is also closed under ¬. The
only serious problem is to interpret ¬ as an operation on closed sets. This can
be solved as follows. As in GLC, we add the product & with residual → and
define ¬α = α → ⊥. We also admit the above axioms for ¬. It is easy to
show that the latter system is conservative over the former system (also for
consequence relations); every model of the former system can be expanded to a
model of the latter system by interpreting & as ∧ and α → β as ¬α ∨ β. For
the latter system, we can proceed as for GLC with additives.

A class of algebras possesses Finite Embeddability Property (FEP), if every
finite partial subalgebra of an algebra from this class can be embedded into some
finite algebra from this class [5, 14]. If the class is closed under products, then
FEP is equivalent to SFMP: if a Horn formula is not valid in this class, then
it can be falsified in some finite algebra from this class. In our setting, Horn
formulas are represented by deduction patterns Φ ` X ⇒ α. As a consequence
of Lemma 3 for BFNL, we obtain:

Theorem 2. BFNL possesses SFMP. The class of boolean-ordered residuated
groupoids possesses FEP.

We can also add to DFNL with ⊥,> new axioms α&β ⇒ α ∧ β, α ∧ β ⇒
α&β. Then, (¬1) is provable, but (¬2) is not. The resulting logic of ∧,∨,→
,⊥,> is intuitionistic, and the corresponding models are Heyting algebras with
an additional residuated structure. We denote this system by HFNL. Its models
are called Heyting-ordered residuated groupoids. All results of this paper can
be obtained for HFNL.

Theorem 3. HFNL possesses SFMP. The class of Heyting-ordered residuated
groupoids possesses FEP.

Clearly, these theorems can be generalized to multi-modal systems. An
interesting special case will be classical modal logics, corresponding to GLC
with booleans, restricted to unary operations o. Our methods yield FEP of
boolean algebras with operators. Caution: if o is denoted by ♦, then o/1 is not
the classical �, defined as �α = ¬♦¬α. o and o/1 form an adjoint pair, and
either gives rise to a different pair of classical modalities, satisfying all laws of
modal logic K. Now, α is a theorem iff > ⇒ α is provable in the sequent system.

References

[1] A. Avron, The Semantics and Proof Theory of Linear Logic, Theoretical
Computer Science 57:161–184, 1988.

[2] F. Belardinelli, P. Jipsen and H. Ono, Algebraic Aspects of Cut Elimina-
tion, Studia Logica 77:209–240, 2004.

12



[3] J. van Benthem, Language in Action: Categories, Lambdas and Dynamic
Logic, North-Holland, Amsterdam, 1991.

[4] J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language,
Elsevier, Amsterdam, 1997.

[5] W.J. Blok and C.J. van Alten, On the finite embeddability property for
residuated ordered groupoids, Transactions of AMS 357.10:4141–4157,
2005.

[6] W. Buszkowski. Some decision problems in the theory of syntactic cat-
egories, Zeitschrift für mathematische Logik und Grundlagen der Mathe-
matik 28:539–548, 1982.

[7] W. Buszkowski, Generative Capacity of Nonassociative Lambek Calculus,
Bull. Polish Acad. Scie. Math. 34:507–516, 1986.

[8] W. Buszkowski, Logical Foundations of Ajdukiewicz-Lambek Categorial
Grammars, Polish Scientific Publishers, Warsaw, 1989. In Polish.

[9] W. Buszkowski, Categorial Grammars with Negative Information, [29]:107–
126.

[10] W. Buszkowski, Mathematical Linguistics and Proof Theory, [4]:683–736.

[11] W. Buszkowski, Lambek Calculus with Nonlogical Axioms, in: C. Casadio,
P.J. Scott and R. Seely (eds.), Language and Grammar. Studies in Mathe-
matical Linguistics and Natural Language: 77–93, CSLI Publications, Stan-
ford, 2005.

[12] J.M. Dunn, Partial Gaggles Applied to Logics with Restricted Structural
Rules, in: P. Schroeder-Heister and K. Dosen (eds.), Substructural Logics:
63–108, Oxford University Press, 1993.

[13] M. Farulewski, Finite Embeddabilty Property for Residuated Groupoids,
Reports on Mathematical Logic, 2007. To appear.

[14] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An
Algebraic Glimpse at Substructural Logics, Elsevier, Amsterdam, 2007.

[15] P. de Groote and F. Lamarche, Classical Nonassociative Lambek Calculus,
Studia Logica 71.2:355–388, 2002.

[16] G. Jäger, Residuation, structural rules and context-freeness, Journal of
Logic, Language and Information 13:47–59, 2004.

[17] M. Kanazawa, The Lambek Calculus Enriched with Additional Connec-
tives, Journal of Logic, Language and Information 1.2:141–171, 1992.

[18] M. Kandulski, The equivalence of nonassociative Lambek categorial gram-
mars and context-free grammars, Zeitschrift für mathematische Logik und
Grundlagen der Mathematik 34:41–52, 1988.

13



[19] J. Lambek, The mathematics of sentence structure, American Mathematical
Monthly 65:154–170, 1958.

[20] J. Lambek, On the calculus of syntactic types, in: R. Jakobson (ed.), Struc-
ture of Language and Its Mathematical Aspects: 166–178, AMS, Provi-
dence, 1961.

[21] J. Lambek, Bilinear logic in algebra and linguistics, in: J.-Y. Girard, Y.
Lafont and L. Regnier (eds.), Advances in Linear Logic: 43–58, Cambridge
University Press, 1995.

[22] J. Lambek, Type Grammars Revisited, in: A. Lecomte, F. Lamarche and
G. Perrier, Logical Aspects of Computational Linguistics, LNAI 1582:1–27,
Springer, 1999.

[23] M. Moortgat, Categorial Type Logic, [4]:93–177.

[24] G. Morrill, Type Logical Grammar. Categorial Logic of Signs, Kluwer, Dor-
drecht, 1994.

[25] M. Okada and K. Terui, The finite model property for various fragments
of intuitionistic linear logic, Journal of Symbolic Logic 64:790–802, 1999.

[26] H. Ono and Y. Komori, Logics without the contraction rule, Journal of
Symbolic Logic 50:169–201, 1985.

[27] M. Pentus, Lambek Grammars are Context-Free, Proc. 8th IEEE Symp.
Logic in Computer Sci.: 429–433, 1993.

[28] M. Pentus, Lambek calculus is NP-complete, Theoretical Computer Science
357:186–201, 2006.

[29] H. Wansing (ed.), Negation. A Notion in Focus, de Gruyter, 1996.

[30] H. Wansing, A Note on Negation in Categorial Grammar, Logic Journal of
the IGPL. To appear.

14


