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Abstract

[8] defines an interpretation of FL without 1 in its version without
empty antecedents of sequents (employed in type grammars) and applies
this interpretation to prove some general results on the complexity of sub-
structural logics and the generative capacity of type grammars. Here this
interpretation is extended for nonassociative logics (also with structural
rules), logics with 1, logics with distributive laws for ∧,∨, logics with
unary modalities, and multiplicative fragments.

1 Introduction and preliminaries

Full Lambek Calculus is a basic substructural logic [12]. In the present paper
Full Lambek Calculus is denoted by FL1, its 1-free fragment by FL∗, and the
subsystem of FL∗ not allowing empty antecedents of sequents by FL. This no-
tation differs from a standard one [12], where FL stands for our FL1. The pure
logicians, however, usually ignore logics like FL in our sense, and we need a
notation discriminating these different systems.

Type grammars (or: categorial grammars) are formal grammars based on
type-theoretic syntax and semantics. The language is described by an assign-
ment of types to lexical items (words), and compound expressions are processed
by means of a type logic. Type logics are certain basic substructural logics,
usually presented as sequent systems: formulae of these logics are interpreted
as types. Type grammars often employ logics not allowing empty antecedents
of sequents, e.g. L, NL. NL♦.

The present paper studies some relations between the versions allowing
empty antecedents (more popular among logicians) and those not allowing them
(more popular among linguists). We reduce the provability in the former sys-
tems to the provability in the latter, using two translations N and P of formulae
in the language of FL (or its extension) into formulae of the same language. N
(resp. P ) acts on negative (resp. positive) occurrences of subformulae in se-
quents. More details are given at the end of this section.
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FL1 admits no structural rules except associativity. Type grammars also
employ its nonassociative versions. The basic logics are Full Nonassociative
Lambek Calculus (FNL1), also named Groupoid Logic (GL) in [12, 13], and its
subsystem FNL.

FNL1 can be presented as a sequent system in language (·, \, /, 1,∧,∨). We
refer to · as product, \ as right implication, / as left implication, ∧ as and, ∨
as or. We reserve meta-variables p, q, r, s (possibly with subscripts, primes etc.)
for variables and α, β, γ, δ for formulae. Formula structures are the elements
of the free unital groupoid generated by the set of formulae. All formulae are
(atomic) formula structures, λ is the unit (the empty structure), and the com-
pound structures are of the form (Γ,∆), where Γ and ∆ are (nonempty) formula
structures. We assume (Γ, λ) = (λ,Γ) = Γ, for any structure Γ. Sequents are
of the form Γ⇒ α. One writes ⇒ α for λ⇒ α. Contexts are extended formula
structures, containing one occurrence of a special atom x (a place for substitu-
tion). If Γ is a context, then Γ[∆] denotes the substitution of ∆ for x in Γ; see
[13] for a more precise exposition.

FNL1 is based on the following axioms and rules.

(Id) α⇒ α

(L·) Γ[(α, β)]⇒ γ

Γ[α · β]⇒ γ
(R·) Γ⇒ α ; ∆⇒ β

(Γ,∆)⇒ α · β

(L\) Γ[β]⇒ γ ; ∆⇒ α

Γ[(∆, α\β)]⇒ γ
(R\) (α,Γ)⇒ β

Γ⇒ α\β

(L/)
Γ[β]⇒ γ ; ∆⇒ α

Γ[(β/α,∆)]⇒ γ
(R/)

(Γ, α)⇒ β

Γ⇒ β/α

(L∧)
Γ[αi]⇒ γ

Γ[α1 ∧ α2]⇒ γ
(R∧)

Γ⇒ α ; Γ⇒ β

Γ⇒ α ∧ β

(L∨)
Γ[α]⇒ γ ; Γ[β]⇒ γ

Γ[α ∨ β]⇒ γ
(R∨)

Γ⇒ αi

Γ⇒ α1 ∨ α2

(L1l)
Γ[∆]⇒ α

Γ[(1,∆)]⇒ α
(L1r)

Γ[∆]⇒ α

Γ[(∆, 1)]⇒ α
(R1) ⇒ 1

(CUT)
Γ[α]⇒ β ; ∆⇒ α

Γ[∆]⇒ β

FNL∗ denotes the subsystem of FNL1, restricted to the formulae without
1; so (L1l), (L1r) and (R1) are omitted. FNL admits neither 1, nor λ; so the
formula structures form the free groupoid generated by the set of 1-free formulae.
One says that α is provable, if ⇒ α is provable.

We also consider structural rules: associativity (a), exchange (e), integrality
(i) (also called: left weakening), and contraction (c).

(a)
Γ[((∆1,∆2),∆3)]⇒ γ

Γ[(∆1, (∆2,∆3))]⇒ γ
(e)

Γ[(∆1,∆2)]⇒ γ

Γ[(∆2,∆1)]⇒ γ
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(i)
Γ[∆i]⇒ γ

Γ[(∆1,∆2)]⇒ γ
(c)

Γ[(∆,∆)]⇒ γ

Γ[∆]⇒ γ

Since λ is the unit for the operation ( , ), rules (a), (e), (c) can be restricted
to nonempty structures ∆i,∆, and similarly for (i) except the special case: from
⇒ α infer ∆⇒ α.

Following [12], by FNLe we denote FNL with (e), by FNL1ei we denote FNL1

with (e) and (i), and so on. Logics with (a) are associative substructural logics.
FNL1a is further denoted by FL1 and called Full Lambek Calculus with 1 (this
is precisely Full Lambek Calculus in the sense of [12]). We also define FL∗ as
FNL∗a, FL as FNLa, FLe as FNLae, and so on. If S is a set of structural rules,
then FNL∗S (resp. FNLS) denotes FNL∗ (resp. FNL) enriched with all rules
from S, and similarly for FL∗S and FLS .

In associative substructural logics the antecedents of sequents can be repre-
sented as finite sequences of formulae (then, (a) is implicit). The empty sequence
is denoted by ε, and one writes ⇒ α for ε ⇒ α. We only recall rules (L ·) and
(R ·) in this form (see [8] for the full list).

(L ·) Γ, α, β,Γ′ ⇒ γ

Γ, α · β,Γ′ ⇒ γ
, (R ·) Γ⇒ α ; ∆⇒ β

Γ,∆⇒ α · β

One can also consider the constants ⊥,> with the axioms:

(a.⊥) Γ[⊥]⇒ α (a.>) Γ⇒ > .

In this paper 0 (used to define negations; see [12]) plays no essential role,
like in type grammars. Nonetheless one might add it to all logics studied here,
with no axioms, nor rules for 0. We do not consider sequents of the form Γ⇒;
the rule of right weakening can be simulated by the definition 0 = ⊥.

In logics with (e) α\β ⇔ β/α is provable; this means: the sequents in both
directions are provable. Therefore one writes α→ β for α\β and β/α (precisely,
instead of two implications \, / one employs one implication →).

All logics mentioned above satisfy the cut-elimination theorem: every prov-
able sequent can be proved without (CUT). For the (·, \, /)−fragments of FL
and FNL this theorem was proved by Lambek [20, 21] and for a version of FL1

by Ono and Komori [32].
The (·, \, /)−fragment of FL was proposed by Lambek [20] as the calculus of

syntactic types for type grammars. Lambek’s name Syntactic Calculus was later
replaced by Lambek Calculus. This logic is denoted by L and its nonassociative
version by NL. The variants L∗, L1, Le, NL∗, NL1, NLe etc. are defined as
above.

In the terminology of linear logics, ·, \, /, 1, 0 are the multiplicative connec-
tives and constants, and ∧,∨,⊥,> are the additive ones. In this paper, we as-
sume the higher priority of multiplicatives over additives. For instance, p ∨ q/r
stands for p ∨ (q/r).

The cut-elimination theorem entails the subformula property : every provable
sequent Γ ⇒ α has a proof in which all sequents consist of subformulae of
the formulae appearing in Γ ⇒ α. As a consequence, the logics allowing cut
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elimination are conservative extensions of their language-restricted fragments,
e.g. FL1 conservatively extends FL∗ and L∗. On the other hand, NL∗ is not a
conservative extension of NL; for instance, p/(q/q)⇒ p is provable in NL∗ but
not in NL. Similarly, L∗ is not a conservative extension of L, FL∗ of FL, and
so on. Another consequence is the decidability of all logics FNL1S , FNL∗S , and
FNLS such that S does not contain (c). By various methods it has been shown
that all logics FL1S but FL1c are decidable; the undecidability of FL1c and FLc

was announced by K. Chvalovsky and R. Horčik at Logic, Algebra and Truth
Degrees 2014 (unpublished). Similarly, all logics FLS are decidable except FLc.
For FNL1c, FNL1ec, FNLc, FNLec the problem of (un)decidability is open; the
remaining nonassociative logics FNL1S and FNLS are decidable.

A type grammar, based on the logic L (an L−grammar) can be defined as a
triple G = (ΣG, IG, δG) such that ΣG is a nonempty finite set, IG is a mapping
which assigns a finite set of formulae of L to every element of ΣG, and δG is a
formula of L. ΣG is called the lexicon (or: alphabet) of G, IG the initial type
assignment of G, and δG the designated type of G. Most often δG is a fixed
variable, and one denotes it by sG (or: s).

Variables play the role of atomic types, corresponding to basic syntactic
categories. Therefore they are really understood as constants, but we treat
them as variables in type logics (in particular, all provable sequents are closed
under substitutions).

In mathematical linguistics, expressions of the language are often represented
as phrase structures, i.e. (skeletal) trees whose leaves are labeled by words.
To avoid drawing pictures we represent phrase structures as bracketed strings:
(XY ) represents the tree whose root has two daughters, being the roots of X
and Y , respectively. The recursive definition is as follows: (i) all elements of Σ
are phrase structures (on Σ), (ii) if X and Y are phrase structures, then (XY )
is a phrase structure. ΣP denotes the set of all phrase structures on Σ, and
ΣP∗ additionally contains the empty structure λ. This resembles the standard
notation of the formal language theory: Σ∗ (resp. Σ+) for the set of all (resp.
nonempty) finite strings on Σ. By a language (resp. a phrase language) on Σ
one means an arbitrary set L ⊆ Σ∗ (resp. L ⊆ ΣP∗); it is said to be ε−free
(resp. λ−free), if ε 6∈ L (resp. λ 6∈ L).

Clearly the formula structures are precisely the phrase structures on the set
of formulae. For better readability, the constituents of a formula structure are
separated by a comma, but commas are omitted in phrase structures of language
expressions. So we write (John works), but (n,n\s).

Let G be an L−grammar. IG is extended for phrase structures on ΣG as
follows: IG(λ) = λ, IG((XY )) = {(Γ,∆) : Γ ∈ IG(X),∆ ∈ IG(Y )}. One
defines: X :G α, for X ∈ ΣP∗

G , if there exists Γ ∈ IG(X) such that Γ ⇒ α is
provable in L. LP (G,α) consists of all X ∈ ΣP∗

G such that X :G α. LP (G, δG)
is called the phrase language of G and denoted by LP (G). The language of
G consists of all yields of the trees from LP (G), i.e. the strings obtained by
dropping all parentheses in the structures from LP (G).

For natural languages, the elements of ΣG are interpreted as words (lexical
items) and the elements of L(G) as grammatically correct declarative sentences
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(statements). For formal languages, ΣG consists of symbols of the language and
L(G) of all strings generated by G.

The size limits of this paper do not allow any serious discussion of type
grammars applied to natural and formal languages. The reader is referred to
the recent textbook [29] for linguistic applications. General overviews can also
be found in [30, 4, 27].

We give a few examples. Let us fix the atomic types: s (sentence), n (proper
noun), cn (common noun). α\β (resp. β/α) is interpreted as the type of
functors (or: functional expressions) which with any expression of type α on
the left (resp. right) form a compound expression of type β. Thus, n\s is a
type of (intransitive) verb phrase, e.g. ‘works’, ‘walks in the garden’, (n\s)/n
of transitive verb phrase, e.g. ‘likes’, ‘desperately loves’, s/(n\s) of noun phrase
as subject, e.g. ‘he’, ‘some student’, ‘every teacher’, (s/n)\s of noun phrase as
object, e.g. ‘him’, ‘her’, ‘some student’, (s/(n\s))/cn of determiner, e.g. ‘some’,
‘every’, ‘one’, cn/cn of adjective (as noun modifier), (cn/cn)/(cn/cn) of adverb
(as adjective modifier), and so on.

This typing is by no way the only possible option. Different authors propose
different types. For instance, np (noun phrase) is often counted to atomic
types, verb phrases are typed np\s, and transitive verb phrases (np\s)/np. The
particular choice is motivated by various reasons, e.g. semantics, analogies
with logical formalisms, economy of typing, and others. Above we completely
ignore tense, person, number, case. Lambek [22] employs 33 atomic types for a
fragment of English, among them: s (statement), s1 (statement in present tense),
s2 (statement in past tense), π (subject), πk, for k = 1, 2, 3 (subject in k−th
person). Subtypes are linked with the main type by nonlogical assumptions,
e.g. sk ⇒s, πk ⇒ π.

Type logics like L and its extensions are more flexible than the classical
type reduction procedure of [1] (going back to ideas of K. Ajdukiewicz (1935)
and Y. Bar-Hillel (1953)), which is based on the reduction laws: α, α\β ⇒ β
and β/α, α ⇒ β. The latter can be formalized as the subsystem of L (or
NL), restricted to (\, /)−types and axiomatized by (Id), (L\), (L/) ((CUT) is
admissible); one denotes this poor logic by AB. Since n,(n\s)/n,n⇒ s is prov-
able in AB, then any AB-grammar with the types listed above accepts ‘John
likes Mary’ as a sentence. Since s/(n\s),(n\s)/n,(s/n)\s⇒ s is provable in L,
not in AB, then ‘he likes her’ is accepted by an L-grammar, but not an AB-
grammar with these types. One can repair this failure by assigning new types,
e.g. (s/n)/((n\s)/n) to ‘he’. In general, AB-grammars require many initial types
assigned to words, while L-grammars can reduce their number and explain log-
ical relations between types. Here s/(n\s) can be expanded to the new type
by the law α/β ⇒ (α/γ)/(β/γ), provable in L. Proofs in L and its extensions
determine semantic transformations, definable in typed lambda-calculus. Due
to size limits, we cannot discuss this topic here; again we refer to [29, 4, 27].
Logics of semantic types admit (a), (e) and, possibly, other structural rules.

In a sense, L is even too strong for linguistic purposes. By associativity, if
G is an L-grammar, then LP (G) contains all possible phrase structures whose
yields belong to L(G). For instance, not only ((every student) (hates (some

5



teacher))) and (((every student) hates) (some teacher)) are accepted, which
well reflects the ∀∃ and ∃∀ readings of this sentence, but also (every ((student
(hates some)) teacher)), which is linguistically weird (though admits a semantic
reading). This and other reasons motivate some linguists to prefer NL as a basic
type logic. NL does not accept all possible phrase structures, but it is certainly
too weak for a satisfactory description of natural language. For instance, with
the types listed above, NL accepts ‘he likes Mary’, since (s/(n\s),((n\s)/n,n))⇒
s is provable, but not ‘John likes her’.

The power of nonassociative logics can be strengthened in different ways.
One possibility is to employ theories; for instance, we add to NL some assump-
tions, provable in L (assumptions are not closed under substitutions). [6] shows
that the provability from assumptions in NL is decidable in polynomial time, so
this approach leads to tractable parsing procedures. Another approach, elab-
orated by Morrill [30], Moortgat [26, 27] and others (see [29]), extends NL by
new operators, e.g. unary modalities ♦,�↓, connected by the unary residuation
law: ♦a ≤ b iff a ≤ �↓b, also several pairs of modalities, new binary products,
and other extras. Although associativity is not assumed in general, it is allowed
for some modal formulae, and so like with other structural rules. This resembles
the role of exponentials in linear logics [14]. Logics with ♦,�↓ will be considered
in Section 4.

Although types with ∧,∨ were not frequently employed in type grammars,
some authors considered them for different reasons. Lambek [21] used ∧ to re-
place the multi-valued type assignment IG(a) = {α1, . . . , αn} by the one-valued
type assignment IG(a) = α1 ∧ · · · ∧ αn. Kanazawa [17] considered a feature
decomposition of types; for instance, singular (resp. plural) noun phrases are
typed np∧ sing (resp. np∧pl). Lambek’s nonlogical assumptions can be re-
placed by definitions, e.g. π = π1 ∨ π2 ∨ π3. Besides such concrete applications,
type logics with ∧,∨ are interesting for theoretical reasons also from the view-
point of type grammars. In particular, our translations N,P essentially employ
additives.

The methods of this paper are proof-theoretic, not algebraic. Therefore we
omit the definitions of algebras, corresponding to logics under consideration.
We only note that NL is the strongly complete logic of residuated groupoids,
NL1 of unital residuated groupoids, L of residuated semigroups, L1 of residuated
monoids, FNL of lattice-ordered residuated groupoids, FL of residuated lattices,
and so on; see [12, 13, 3]. In algebras, a formula structure Γ is interpreted as the
formula f(Γ), recursively defined as follows: f(λ) = 1, f(α) = α, f((Γ,∆)) =
f(Γ)·f(∆). Γ⇒ γ is true in the algebra A for the valuation µ, if µ(f(Γ)) ≤ µ(α).

In linguistics, the standard models of L are language models, i.e. the powerset
algebras P(Σ+). The operations are defined as follows: L1 · L2 = {uv : u ∈
L1, v ∈ L2} and \, / are the residual operations. For L∗, one replaces Σ+ by Σ∗,
for NL by ΣP , and for NL∗ by ΣP∗.

In language models the connectives ∧ and ∨ are naturally interpreted as
intersection and union, respectively, of (phrase) languages. This yields distribu-
tive lattices. The distributive laws for ∧,∨ are not provable in logics considered
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above. One can add them as new axioms. It is sufficient to add:

(D) α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ).

FNL with (D) is denoted by DFNL, and similarly for other systems, e.g. DFNL∗,
DFL etc. The cut-elimination theorem does not hold for these axiomatizations,
but can be proved for other, equivalent systems; see Section 4. DFL1 is the
complete logic of distributive residuated lattices.

Let us note that a linguistic interpretation can be found for logics like FL∗,
FL, FNL∗, FNL, in terms of syntactic concept lattices of Clark [11]. Gram-
matical categories are defined by sets of contexts; the family of all categories is
a complete residuated lattice (non-distributive, in general). This construction
resembles models obtained by nuclear completion; see [2, 12, 13].

Now we briefly comment on some reasons for the usage of λ−free logics,
like NL, FNL, L, FL, in type grammars. In these logics no single formula is
provable, hence they cannot be formalized as Hilbert-style systems, nor easily
related to other nonclassical logics. Therefore the pure logicians usually ignore
them. In type grammars, however, they were extensively studied, starting from
Lambek [20]. One reason is semantical: types are to be assigned to meaningful
expressions only, and the ‘empty expression’ has no meaning. In linguistics, ex-
pressions are analyzed as syntactic structures, e.g. phrase structures, normally
restricted to nonempty structures. Although the theory of production grammars
and automata regards languages containing ε, type grammars are more natural
and elegant, when they are restricted to ε−free languages. Since ⇒ s is not
provable in any consistent substructural logic, L(G) is ε−free for any grammar
G whose designated type is a variable. [28] provide other arguments. Above
we assigned type cn/cn to adjectives (noun modifiers) and (cn/cn)/(cn/cn) to
adverbs (adjective modifiers). Since α/α⇔ (α/α)/(α/α) is provable in L∗, then
adjectives and adverbs are indistinguishable on the basis of L∗, which is unac-
ceptable for linguistics. This problem can be overcome by modifying the initial
typing, e.g. assigning a new atomic type to adjectives, but this complicates the
grammar and is less natural from the semantical viewpoint. Also the ε−free
formal languages admit a simpler typing than their companions with ε; see [8].

This paper is organized as follows. In Section 2 we translate every formula
of FNL into two formulae N(α) and P (α) of the same language (although N,P
depend on the particular logic, their definition is uniform for all logics considered
here). Theorem 1 states that Γ⇒ γ is provable in FNL∗S if and only if N(Γ)⇒
P (γ) is provable in FNLS , for any sequent Γ ⇒ γ with Γ 6= λ and any set
of structural rules S. Theorem 2 provides an interpretation of FL1S in FL∗S ,
extending the interpretation of L1 in L∗ from [19].

The functions N,P for FNL∗S are computable if and only if FNL∗S is decid-
able. We show that the decidability of FNLS implies the decidability of FNL∗S ,
and the decidability of FLS implies the decidability of FL1S .

In Section 3 the translation maps N,P are adapted for the multiplicative
fragments; they obtain the form of multi-valued maps which send each formula
to a finite set of formulae. The method also works with arbitrary structural
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rules except (c). Section 4 extends the results of Section 2 for logics with the
distributive laws for ∧,∨ and logics with unary modalities. Section 5 discusses
some consequences of these results for the generative capacity of type gram-
mars and the complexity of substructural logics (the theorem of [16] on the
PSPACE-hardness of consistent substructural logics with the disjunction prop-
erty is extended for logics not allowing empty antecedents and with restricted
associativity).

The present paper continues [8], which focuses on FL∗ and FL. Some exten-
sions, elaborated here, are announced in [8] without proof. No proof from [8] is
rewritten here except some brief outlines in Section 5.

Since this paper is strongly motivated by linguistic applications of substruc-
tural logics, we refer to relatively many works in the tradition of type grammars.
Not to overload the list of references we skip several references to relevant logical
works. Much more can be found in [12, 13, 18].

2 An interpretation of FNL∗S in FNLS

The positive and negative occurrences of subformulae in formulae are recursively
defined as follows: (i) α is positive in α, (ii) γ is positive (resp. negative) in
α ◦ β, where ◦ ∈ {·,∧,∨}, if γ is positive (resp. negative) in α or β, (iii) γ is
positive (resp. negative) in α\β, if either γ is positive (resp. negative) in β,
or γ is negative (resp. positive) in α, (iv) the same for γ = β/α. Further, γ
is positive (resp. negative) in (Γ,∆), if γ is positive (resp. negative) in Γ or
∆, and γ is positive (resp. negative) in Γ ⇒ α, if γ is either negative (resp.
positive) in Γ, or positive (resp. negative) in α.

We fix a set of structural rules S. To every formula γ in language (·, \, /,∧,∨)
we assign two formulae N(γ) (the negative translation of γ) and P (γ) (the
positive translation of γ) of the same language; see Table 1. By `∗ and `
we denote the provability in FNL∗S and FNLS , respectively. Since the side
conditions depend on S, then, actually, the maps N and P also depend on S. It
would be more precise to write PS , NS instead of P , N . We omit the subscript
S, if it is clear from the context or inessential. For example, for FNL∗ we obtain
N(p/(q/q)) = p/(q/q) ∧ p, P (p · (q/q)) = p · (q/q) ∨ p. P (resp. N) acts on
positive (resp. negative) occurrences of formulae in sequents.

N and P can also be defined for formulae containing 0,⊥,>. We set N(γ) =
P (γ) = γ, for γ ∈ {0,⊥,>}. We extend N for nonempty formula structures by
the recursive clause: N(Γ,∆) = (N(Γ), N(∆)). The same definition works for
contexts; we set N(x) = x. Clearly N(Γ[∆]) = N(Γ)[N(∆)], for ∆ 6= λ.

Lemmas 1 and 2 below have been proved in [8] for FL and FL∗; the same
proofs work for FNL and FNL∗. Here we outline different proofs of slightly
stronger results.

Lemma 1. For any set S and any formula γ, NS(γ) ⇒ γ and γ ⇒ PS(γ) are
provable in FNL.
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γ N(γ) P (γ) condition
p p p p is a variable

α ◦ β N(α) ◦N(β) P (α) ◦ P (β) ◦ ∈ {∧,∨}
α · β N(α) ·N(β) P (α) · P (β) 6`∗ α and 6`∗ β
α · β as above P (α) · P (β) ∨ P (β) `∗ α and 6`∗ β
α · β as above P (α) · P (β) ∨ P (α) 6`∗ α and `∗ β
α · β as above P (α) · P (β) ∨ P (α) ∨ P (β) `∗ α and `∗ β
α\β P (α)\N(β) N(α)\P (β) 6`∗ α
α\β P (α)\N(β) ∧N(β) as above `∗ α
β/α N(β)/P (α) P (β)/N(α) 6`∗ α
β/α N(β)/P (α) ∧N(β) as above `∗ α

Table 1: Translations N and P .

Proof. We prove both claims by simultaneous induction on γ. If γ is an atom,
then they hold, by (Id) and the definition of NS , PS . For the inductive steps,
one uses the monotonicity rules, derivable in FNL (in (MON) ◦ ∈ {·,∧,∨}).

(MON)
α⇒ α′ ; β ⇒ β′

α ◦ β ⇒ α′ ◦ β′

(MON\) α⇒ α′ ; β ⇒ β′

β′\α⇒ β\α′
(MON/)

α⇒ α′ ; β ⇒ β′

α/β′ ⇒ α′/β

Furthermore, the following sequents are provable in FNL, for any formulae α, β
and any set S.

PS(α) · PS(β)⇒ PS(α · β) (1)

NS(α\β)⇒ PS(α)\NS(β), NS(β/α)⇒ NS(β)/PS(α). (2)

Let γ = α\β. By the induction hypothesis, NS(β) ⇒ β and α ⇒ PS(α)
are provable in FNL. Then, PS(α)\NS(β)⇒ α\β is provable, by (MON\), and
consequently, NS(γ) ⇒ γ is provable, by (2) and (CUT). By the induction
hypothesis, NS(α) ⇒ α and β ⇒ PS(β) are provable in FNL. Then, α\β ⇒
NS(α)\PS(β) is provable, by (MON\), and we have PS(α\β) = NS(α)\PS(β).

The remaining cases are left to the reader.

In the proof of Lemma 2, N = NS and P = PS .

Lemma 2. Let S be fixed. For any formula γ, NS(γ)⇔ γ and PS(γ)⇔ γ are
provable in FNL∗S.

Proof. Although N(γ) ⇒ γ and γ ⇒ P (γ) are provable, by Lemma 1, it is
convenient to prove both claims with ⇔ by simultaneous induction on γ. For
atoms, they are obvious. For the inductive steps, we use the fact that `∗ α⇔ β
is a congruence on the formula algebra. Furthermore, the following are provable
in FNL∗S , for any formulae α, β.

P (α) · P (β)⇔ P (α · β) (3)
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P (α)\N(β)⇔ N(α\β), N(β)/P (α)⇔ N(β/α) (4)

We show (3). P (α) · P (β) ⇒ P (α · β) is provable, by (1), since FNL is a
subsystem of FNL∗S . We prove ⇐. We consider four cases. (1◦) 6`∗ α and 6`∗ β.
The claim is obvious. (2◦) `∗ α and 6`∗ β. Then, P (α ·β) = P (α) ·P (β)∨P (β).
By Lemma 1 and (CUT), `∗ P (α), hence `∗ P (β)⇒ P (α) ·P (β), by (R ·), and
`∗ P (α · β)⇒ P (α) · P (β), by (L∨). For (3◦) 6`∗ α, `∗ β, and (4◦) `∗ α, `∗ β,
the arguments are similar. (4) is left to the reader.

Let γ = α · β. By the induction hypothesis, N(α) ⇔ α and N(β) ⇔ β
are provable in FNL∗S . Then, N(α) · N(β) ⇔ α · β is provable. We have
N(α · β) = N(α) ·N(β), which yields N(γ) ⇔ γ. By the induction hypothesis
P (α) ⇔ α and P (β) ⇔ β are provable, hence P (α) · P (β) ⇔ α · β is provable.
Consequently, P (γ)⇔ γ is provable, by (3) and (CUT).

The remaining cases are left to the reader.

We are ready to prove the main result of this section.

Theorem 1. Let S be fixed. (I) For any sequent Γ ⇒ γ, where Γ 6= λ, Γ ⇒ γ
is provable in FNL∗S if and only if NS(Γ) ⇒ PS(γ) is provable in FNLS. (II)
Let (i) belong to S. For any formula γ, provable in FNL∗S, and any Γ 6= λ, the
sequent Γ⇒ PS(γ) is provable in FNLS.

Proof. We prove the ‘if’ part of (I). Assume ` N(Γ)⇒ P (γ). Then, `∗ N(Γ)⇒
P (γ), hence `∗ Γ⇒ γ, by Lemma 2 and (CUT).

The ‘only if’ part of (I), for S not containing (i), is proved by induction on
cut-free proofs in FNL∗S . For (Id), ` N(α) ⇒ P (α) holds, by (Id), Lemma 1
and (CUT). If Γ⇒ γ is an axiom (a.⊥) or (a.>), then N(Γ)⇒ P (γ) is also an
axiom from this group.

The rules for ∧,∨ and (L ·), (R\), (R/) are treated easily. Let us consider
(L∨). By the induction hypothesis, ` N(Γ[α])⇒ P (γ) and ` N(Γ[β])⇒ P (γ).
Then, ` N(Γ)[N(α)]⇒ P (γ) and ` N(Γ)[N(β)]⇒ P (γ), and we apply (L∨) in
FNLS .

Structural rules (a), (e), (c) cause no problem: the induction hypothesis
applied to the premise directly yields our claim for the conclusion.

We consider (R ·). There are three subcases. (1◦) Γ 6= λ and ∆ 6= λ.
By the induction hypothesis, ` N(Γ) ⇒ P (α) and ` N(∆) ⇒ P (β). Then,
` N((Γ,∆)) ⇒ P (α) · P (β), by (R ·). Using (R∨), if necessary, we obtain
` N((Γ,∆)) ⇒ P (α · β). (2◦) Γ = λ and ∆ 6= λ. Then, `∗ α. Also ` N(∆) ⇒
P (β), by the induction hypothesis. Consequently, ` N(∆)⇒ P (α ·β), by (R∨),
possibly applied twice. (3◦) Γ 6= λ and ∆ = λ. One argues as for (2◦).

We consider (L\). There are two subcases. (1◦) ∆ 6= λ. By the induc-
tion hypothesis, ` N(Γ[β]) ⇒ P (γ) and ` N(∆) ⇒ P (α). By (L\), we ob-
tain ` N(Γ)[(N(∆), P (α)\N(β))] ⇒ P (γ). Using (L∧), if necessary, we get
` N(Γ)[(N(∆), N(α\β))] ⇒ P (γ), hence ` N(Γ[(∆, α\β)]) ⇒ P (γ). (2◦)
∆ = λ. Then, `∗ α and N(α\β) = P (α)\N(β) ∧ N(β). As for (1◦), we
get ` N(Γ[β]) ⇒ P (γ), hence ` N(Γ[α\β]) ⇒ P (γ), by (L∧). The argument
for (L/) is similar.
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Let S contain (i). The ‘only if’ part of (I) and (II) are proved by simultaneous
induction on cut-free proofs in FNL∗S (precisely: on the number of sequents
appearing in the cut-free proof). For (I), the argument copies the above, but
we need one new case: rule (i).

(1◦) Γ[(∆1,∆2)]⇒ γ results from Γ[∆2]⇒ γ, by (i), with ∆1 6= λ, ∆2 6= λ.
By the induction hypothesis, ` N(Γ[∆2]) ⇒ P (γ), hence ` N(Γ[(∆1,∆2)]) ⇒
P (γ), by (i) in FNLS . (2◦) As above with the premise Γ[∆1]⇒ γ. The argument
is similar. (3◦) Γ⇒ γ results from ⇒ γ, by (i). By the induction hypothesis for
(II), ` N(Γ)⇒ P (γ).

We prove (II). Let γ be provable in FNL∗S . Then, ⇒ γ must be either an
instance of (a.>), or the conclusion of one of the rules: (R ·), (R\), (R/), (R∧),
(R∨). We fix Γ 6= λ. For (a.>), Γ ⇒ P (γ) is also an instance of (a.>). Let us
consider the rules.

(R ·). Then γ = α · β, and the premises are ⇒ α, ⇒ β. By the induction
hypothesis, ` Γ⇒ P (α), hence ` Γ⇒ P (α · β), by (R∨) (applied twice).

(R\). Then γ = α\β, and the premise is α⇒ β. By the induction hypothesis
for (I), ` N(α) ⇒ P (β). Using (i) in FNLS , we obtain ` (N(α),Γ) ⇒ P (β),
hence ` Γ⇒ P (γ), by (R\). For (R/), the argument is similar.

(R∧). Then, γ = α ∧ β, and the premises are ⇒ α, ⇒ β. By the induction
hypothesis, ` Γ⇒ P (α) and ` Γ⇒ P (β), hence ` Γ⇒ P (γ), by (R∧).

(R∨). Then γ = α1 ∨ α2, and the premise is ⇒ αi. By the induction
hypothesis, ` Γ⇒ P (αi), hence ` Γ⇒ P (γ), by (R∨).

Notice that the proof of Theorem 1 would not work, if (CUT) were not
eliminated.

To better understand the relation between FNL∗S and FNLS we need an
additional lemma. We define≡ as the smallest congruence in the formula algebra
such that:

(α ◦ β) ◦ γ ≡ α ◦ (β ◦ γ), α ◦ β ≡ β ◦ α , α ◦ α ≡ α , (5)

for all formulae α, β, γ and ◦ ∈ {∧,∨}. Clearly α ≡ β entails: α⇔ β is provable
in FNL.

Lemma 3. Let S be fixed. For any formula γ, NS(NS(γ)) ≡ NS(γ) and
PS(PS(γ)) ≡ PS(γ).

Proof. Again we proceed by induction on γ, using the fact: `∗ α iff `∗ P (α),
which holds, by Lemma 2. Here we only consider the case γ = α · β. There are
four subcases.

(1◦) 6`∗ α, 6`∗ β. We compute:

P (P (γ)) = P (P (α) · P (β)) = P (P (α)) · P (P (β)) ≡ P (α) · P (β) = P (γ).

(2◦) `∗ α, 6`∗ β. We compute:

P (P (γ)) = P (P (α) · P (β) ∨ P (β)) = P (P (α) · P (β)) ∨ P (P (β)) =

P (P (α)) · P (P (β)) ∨ P (P (β)) ∨ P (P (β)) ≡ P (α) · P (β) ∨ P (β) ≡ P (γ).

11



The remaining subcases are treated in a similar way. If `∗ α, `∗ β, then all
three patterns of (5) are needed.

A sequent of the form NS(Γ)⇒ PS(γ), where Γ 6= λ, is said to be stable in
FNLS . From Lemma 2 it follows that in FNL∗S every sequent whose antecedent
is nonempty is deductively equivalent to a stable sequent; Γ ⇒ γ and N(Γ) ⇒
P (γ) are derivable from each other (using (CUT)).

Corollary 1. For any stable sequent in FNLS, the sequent is provable in FNLS

if and only if it is provable in FNL∗S.

Proof. Fix a sequent N(Γ) ⇒ P (γ) with Γ 6= λ. The ‘only if’ part is obvious.
For the ‘if’ part, assume that N(Γ)⇒ P (γ) is provable in FNL∗S . By Theorem
1, N(N(Γ)) ⇒ P (P (γ)) is provable in FNLS . Consequently, N(Γ) ⇒ P (γ) is
provable in FNLS , by Lemma 3.

Notice that P,N are not extensional (hence not monotone) in FNLS : ` α⇒
β need not imply ` P (α) ⇒ P (β), nor ` N(α) ⇒ N(β), and similarly for ⇔
instead of ⇒. Let α = ((p/(q/q)) · (q/q))/(q/q), β = p/(q/q). Then, α ⇔ β in
FNL, P (α) = ((p/(q/q))·(q/q)∨p/(q/q))/(q/q), P (β) = β, and 6` P (α)⇒ P (β).

Theorem 1 does not allow to interpret in FNLS the provability of ⇒ γ in
FNL∗S . An indirect reduction, however, is possible with the aid of the following
properties of provability in FNL∗S .

(Pr.1) 6`∗ p, 6`∗ 0, 6`∗ ⊥, `∗ >,

(Pr.2) `∗ α ◦ β iff `∗ α and `∗ β, for ◦ ∈ {·,∧},

(Pr.3) `∗ α\β iff ` N(α)⇒ P (β), `∗ β/α iff ` N(α)⇒ P (β),

(Pr.4) `∗ α ∨ β iff `∗ α or `∗ β.

In (Pr.3) N,P are to be computed for the direct subformulae of α\β and
β/α, and this computation requires checking the provability of some proper sub-
formulae of α or β. One easily obtains an algorithm which computes N(α), P (α)
and checks `∗ α, for any formula α; this algorithm is based on the algorithm
for checking the provability in FNLS . Accordingly, the decidability of FNLS

implies the decidability of FNL∗S .
Theorem 1 remains true for some language restricted fragments, e.g. the

languages (·, \,∧,∨), (\, /,∧) and (\, /,∧,∨) (also with 0,⊥,>), since these
languages are closed under N,P .

The fragment FL∗e[→,∧, 0] is interesting, since it has the same expressive
power as Multiplicative-Additive Linear Logic (MALL), denoted by InFLe in
[12]. On the one hand, FL∗e is a conservative fragment of MALL. On the other
hand, MALL can be faithfully interpreted in FL∗e[→,∧, 0]; see [5]; also MALL
with ⊥,> can be interpreted in FL∗e[→,∧, 0,>]. By Theorem 1 and (Pr.1)-
(Pr.4), one can reduce MALL to FLe[→,∧, 0]. This also works for Cyclic MALL
(CyInFL) and FL[\, /,∧, 0] enriched with the cyclic rule:

(C)
Γ,∆⇒ 0

∆,Γ⇒ 0
.
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For associative logics with 1, our interpretation can be composed with the
one of Kuznetsov [19] who interprets L1 in L∗; his interpretation remains cor-
rect for FL1S and FL∗S . Let us briefly describe this method for FL1 and FL∗

(structural rules cause no difficulty). Here the antecedents of sequents are finite
sequences of formulae.

First, axioms (Id) of FL1 are restricted to p⇒ p, for any variable p. Then,
all sequents α⇒ α are provable (without (CUT)).

Second, rule (L1) (of the form: from Γ,Γ′ ⇒ α infer Γ, 1,Γ′ ⇒ α) is replaced
by the new axioms: (a.1) 1n ⇒ 1, (a.2) 1m, p, 1n ⇒ p, for m,n ≥ 0 (here 1n

denotes the sequence of n copies of 1). Axiom (R1) equals (a.1) for n = 0, and
1 ⇒ 1 is (a.1) for n = 1. It is obvious that every sequent provable in the new
system is also provable in FL1. The converse follows from the admissibility of
(L1) in the new system (show it by induction on proofs). Let L denote the new
system. One can show that L allows cut elimination, but it is not essential for
this argument.

Third, define a substitution σ by: σ(p) = (1 · p) · 1, for any variable p. Let
L− denote L without (a.2). One shows: Γ ⇒ γ is provable in FL1 if and only
if σ(Γ ⇒ γ) is provable in L−. The ‘if’ part is obvious. The ‘only if’ part is
proved by induction on proofs in L

Fourth, a pseudo-substitution η is defined by: η(1) = q\q (here q is a new
variable, not occurring in sequents under consideration). One shows: Γ ⇒ γ is
provable in FL1 if and only if η(σ(Γ ⇒ γ)) is provable in FL∗. The ‘if’ part is
easy: substitute 1 for q in η(σ(Γ ⇒ γ)). The ‘only if’ part is a consequence of
the following: if Γ⇒ γ is provable in L−, then η(Γ⇒ γ) is provable in FL∗ (use
induction on proofs in L−). Associativity is essential for proving (q\q)n ⇒ q\q
in FL∗.

Theorem 2. Let S be a set of structural rules (e), (i), (c). For any sequent
Γ ⇒ γ with Γ 6= ε, Γ ⇒ γ is provable in FL1S if and only if N(η(σ(Γ))) ⇒
P (η(σ(γ))) is provable in FLS.

Proof. This theorem immediately follows from Theorem 1 and the equivalence
proved above. Precisely, Theorem 1 should be rewritten in the form appropriate
for antecedents represented as sequences of formulae.

For logics with (i), Kuznetsov’s interpretation can be simplified. Since (L1)
is an instance of (i), we omit (L1) in the axiomatization. Then, there is no need
for auxiliary logics L, L−. One directly proves: Γ ⇒ γ is provable in FL1S if
and only if η(Γ⇒ γ) is provable in FL∗S , and drops σ in Theorem 2. This also
works for nonassociative logics with (i).

For S containing (i), P (α) · P (β) ⇒ P (α) and P (α) · P (β) ⇒ P (β) are
provable in FNLS ; also P (α) ⇔ P (β) is provable in FNLS , if α and β are
provable in FNL∗S (use Theorem 1. (II)). Therefore, the clauses defining PS(α·β)
can be simplified as in Table 2.

Notice that Kunetsov’s interpretation is polynomial, while our is exponential:
the size of N(α) and P (α) can be exponential in the size of α. We define
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γ P (γ) condition
α · β P (α) · P (β) 6`∗ α and 6`∗ β
α · β P (β) `∗ α
α · β P (α) 6`∗ α and `∗ β

Table 2: P (α · β) for logics with (i).

α0 = p, αn+1 = (q\q)\αn. The size of αn is linear in n, but N(αn) contains 2n

occurrences of p.
Since the provability in FL1S is reducible to the provability in FL∗S , and

the latter to the provability in FLS , then the decidability of FLS implies the
decidability of FL1S . FL1c is undecidable, hence FL∗c and FLc are undecidable
(see Section 1).

3 Multiplicative fragments

N(γ) and P (γ) may contain additives, if even γ is a multiplicative formula.
Therefore, the results of Section 2 cannot directly be applied to multiplicative
logics NL∗ and NL, L∗ and L, etc. We, however, show that N , P can be
replaced by multi-valued maps which send a formula to a finite set of formulae.
[8] announces this solution for L∗ and L (without proof). Here we also regard
nonassociative logics, possibly with structural rules (a), (e), (i), and provide a
proof, employing a multi-valued interpretation of FNLS in NLS , working for
sequents with limited occurrences of ∧,∨.

If U, V are sets of formulae and ◦ is a binary connective, then we define:
U ◦ V = {α ◦ β : α ∈ U, β ∈ V }. Every formula γ in language (·, \, /,∧,∨) is
translated into a set I(γ), of formulae in language (·, \, /). This also works with
1, 0, ⊥, > added to both languages.

(I.1) I(α) = {α}, for any atomic formula α,

(I.2) I(α ◦ β) = I(α) ◦ I(β), for ◦ ∈ {·, \, /},

(I.3) I(α ◦ β) = I(α) ∪ I(β), for ◦ ∈ {∧,∨}.

The occurrence of a connective ◦ in a formula (resp. sequent) is called
positive, if ◦ is the main connective of a subformula which occurs positively in
this formula (resp. sequent), and similarly for negative occurrences.

Lemma 4. Let γ contain no positive (resp. negative) occurrence of ∧ and no
negative (resp. positive) occurrence of ∨. Then, for any δ ∈ I(γ), δ ⇒ γ (resp.
γ ⇒ δ) is provable in FNL.

Proof. Both claims are proved by simultaneous induction on γ. If γ is atomic,
they are obvious.
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γ = α · β. So I(γ) = I(α) · I(β). Let δ ∈ I(γ). Then, δ = δ1 · δ2, for some
δ1 ∈ I(α), δ2 ∈ I(β). By the induction hypothesis, δ1 ⇒ α and δ2 ⇒ β (resp.
α ⇒ δ1, β ⇒ δ2) are provable in FNL, hence δ ⇒ γ (resp. γ ⇒ δ) is provable,
by (MON).

γ = α\β. So I(γ) = I(α)\I(β), α contains no negative (resp. positive)
occurrence of ∧ and no positive (resp. negative) occurrence of ∨, and β contains
no positive (resp. negative) occurrence of ∧ and no negative (resp. positive)
occurrence of ∨. Let δ ∈ I(γ). So δ = δ1\δ2, for some δ1 ∈ I(α), δ2 ∈ I(β). By
the induction hypothesis, α ⇒ δ1 and δ2 ⇒ β (resp. δ1 ⇒ α and β ⇒ δ2) are
provable, hence δ ⇒ γ (resp. γ ⇒ δ) is provable, by (MON\). For γ = β/α, the
reasoning is similar.

γ = α∧β. Only the second claim is applicable. Let δ ∈ I(γ). Then, δ ∈ I(α)
or δ ∈ I(β). Assume δ ∈ I(α). Clearly α satisfies the assumptions of the second
claim. By the induction hypothesis, α⇒ δ is provable, hence γ ⇒ δ is provable,
by (L∧). For δ ∈ I(β), the reasoning is similar.

γ = α ∨ β. Only the first claim is applicable. Let δ ∈ I(γ). Then, δ ∈ I(α)
or δ ∈ I(β). We only consider the first case. Again, α satisfies the assumptions
of the first claim. By the induction hypothesis, δ ⇒ α is provable, hence δ ⇒ γ
is provable, by (R∨).

We extend I to be defined for formula structures: I(λ) = {λ}, I((Γ,∆)) =
{(Γ′,∆′) : Γ′ ∈ I(Γ),∆′ ∈ I(∆)}, and for sequents: I(Γ ⇒ γ) = {Γ′ ⇒ γ′ :
Γ′ ∈ I(Γ), γ′ ∈ I(γ)}. In words, I(Γ ⇒ γ) consists of all sequents which are
obtained from Γ⇒ γ by replacing every formula α occurring in Γ (as an atomic
structure) by some formula β ∈ I(α) and γ by some formula δ ∈ I(γ).

Lemma 5. Let S be a set of structural rules (a), (e), (i). Let Γ ⇒ γ be a
sequent containing no positive occurrence of ∧ and no negative occurrence of ∨.
Then, Γ⇒ γ is provable FNLS (resp. FNL∗S, FNL1S) if and only if there exists
a sequent Γ′ ⇒ γ′ ∈ I(Γ⇒ γ) such that Γ′ ⇒ γ′ is provable in NLS (resp. NL∗S,
NL1S). This remains true for logics with 0,⊥,>.

Proof. We only prove the lemma for FNLS and NLS ; for variants the argument
is almost the same.

We prove the ‘if’ part. Let Γ′ ⇒ γ′ be provable in NLS and Γ′ ⇒ γ′ ∈
I(Γ ⇒ γ). Every formula α occurring in Γ (as an atomic structure) contains
no negative occurrence of ∧ and no positive occurrence of ∨, and γ contains
no positive occurrence of ∧ and no negative occurrence of ∨. Each α in Γ is
replaced in Γ′ by some β ∈ I(α), but α ⇒ β is provable in FNL, by Lemma 4.
Also γ′ ⇒ γ is provable in FNL, by Lemma 4. Consequently, Γ⇒ γ is provable
in FNLS , by (CUT).

The ‘only if’ part is proved by induction on cut-free proofs in FNLS . For
(Id) α ⇒ α, there exists β ∈ I(α), and β ⇒ β is again (Id). For Γ ⇒ γ being
(a.>) or (a.⊥), every sequent from I(Γ⇒ γ) is an axiom of the same kind.

Structural rules (a), (e), (i) cause no problem: we apply the induction hy-
pothesis to the premise, then apply the same rule.
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The remaining rules to be considered are all rules for multiplicative con-
nectives and (L∧), (R∨). For the former rules, the arguments are easy. We
only consider (L\). The premises are: Γ[β] ⇒ γ and ∆ ⇒ α, and the conclu-
sion is: Γ[(∆, α\β)] ⇒ γ. By the induction hypothesis, there exist sequents
Γ′[β′] ⇒ γ′ ∈ I(Γ[β] ⇒ γ) and ∆′ ⇒ α′ ∈ I(∆ ⇒ α), provable in NLS . By
(L\), Γ′[(∆′, α′\β′)]⇒ γ′ is provable in NLS , and the latter sequent belongs to
I(Γ[(∆, α\β)]⇒ γ).

(L∧). The premise is Γ[αi]⇒ γ, where i = 1 or i = 2, and the conclusion is
Γ[α1 ∧ α2] ⇒ γ. By the induction hypothesis, there exists a sequent Γ′[α′i] ⇒
γ′ ∈ I(Γ[αi] ⇒ γ), provable in NLS . Since α′i ∈ I(αi), then α′i ∈ I(α1 ∧ α2).
Consequently, the latter sequent belongs to I(Γ[α1 ∧ α2]⇒ γ).

(R∨). The premise is Γ ⇒ αi, where i = 1 or i = 2, and the conclusion
is Γ ⇒ α1 ∨ α2. By the induction hypothesis, there exists a sequent Γ′ ⇒
α′i ∈ I(Γ ⇒ αi), provable in NLS . As above, this sequent also belongs to
I(Γ⇒ α1 ∨ α2).

Lemma 5 does not hold for logics with (c). For instance, p ∧ q ⇒ p · q is
provable in FNLc, but neither p⇒ p ·q, nor q ⇒ p ·q is provable. The limitation
of occurrences of ∧,∨ is essential: (p, r)⇒ p · r is provable, (p ∨ q, r)⇒ p · r is
not provable, and (p, r) ⇒ p · r ∈ I((p ∨ q, r) ⇒ p · r), but the occurrence of ∨
is negative.

Using Lemma 4, one easily proves that for any sequent Γ⇒ γ, containing no
negative occurrence of ∧ and no positive occurrence of ∨, if Γ ⇒ γ is provable
in FNLS , then every sequent Γ′ ⇒ γ′ ∈ I(Γ⇒ γ) is provable in NLS (similarly
for variants). We leave it as an open problem whether the converse implication
holds.

We define multi-valued maps N ′S and P ′S , which send each formula in lan-
guage (·, \, /) (possibly with 0, ⊥, >) into a finite set of such formulae.

N ′S(γ) = I(NS(γ)), P ′S(γ) = I(PS(γ))

N ′S(Γ) is defined in a similar way as I(Γ) above.

Theorem 3. Let S be a set of structural rules (a), (e), (i). Let Γ ⇒ γ be
a sequent in language (·, \, /), possibly with 0, ⊥, >, such that Γ 6= λ. Then,
Γ ⇒ γ is provable in NL∗S if and only if there exist Γ′ ∈ N ′S(Γ), γ′ ∈ P ′S(γ),
such that Γ′ ⇒ γ′ is provable in NLS.

Proof. Since FNL∗S is conservative over NL∗S , then, by Theorem 1, Γ ⇒ γ is
provable in NL∗S if and only if NS(Γ) ⇒ PS(γ) is provable FNLS . The latter
sequent satisfies the assumptions of Lemma 5: ∧ (resp. ∨) can only be intro-
duced by NS (resp. PS), and NS (resp. PS) acts on negative (resp. positive)
occurrences of subformulae in Γ ⇒ γ, hence all occurrences of ∧ (resp. ∨) in
NS(Γ) ⇒ PS(γ) are negative (resp. positive). Therefore, NS(Γ) ⇒ PS(γ) is
provable in FNLS if and only if there exists Γ′ ⇒ γ′ ∈ I(NS(Γ) ⇒ PS(γ)),
provable in NLS . Clearly Γ′ ∈ N ′S(Γ), γ′ ∈ P ′S(γ).
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4 Distributive and modal logics

We extend the results of Section 2 for logics corresponding to algebras based on
distributive lattices, i.e. DFNL∗S and DFNLS , and logics with unary modalities
♦,�.

As we have noted in Section 1, DFNL can be axiomatized as FNL with
(D), but this system does not allow cut elimination. Another axiomatization
(of DFL1) was proposed by Kozak [18], following similar solutions for relevant
logics, due to J.M. Dunn and G. Mints. We recall it (for DFNL and its variants)
with minor modifications.

The new axiomatization admits two structural operators: besides ( , ), cor-
responding to product, also ( , )∧, corresponding to ∧. Precisely, the formula
structures are recursively defined as follows: (i) all formulae are (atomic) for-
mula structures, (ii) if Γ,∆ are formula structures, then (Γ,∆) and (Γ,∆)∧ are
formula structures. In models, (Γ,∆)∧ is interpreted as f(Γ) ∧ f(∆) (see the
definition of f in Section 1).

The axioms and rules of DFNL are those of FNL except that (L∧) is replaced
by:

(L∧D)
Γ[(α, β)∧]⇒ γ

Γ[α ∧ β]⇒ γ
,

and one adds structural rules (a), (e), (i), (c) for ( , )∧.

(a∧)
Γ[((∆1,∆2)∧,∆3)∧]⇒ γ

Γ[(∆1, (∆2,∆3)∧)∧]⇒ γ
(e∧)

Γ[(∆1,∆2)∧]⇒ γ

Γ[(∆2,∆1)∧]⇒ γ

(i∧)
Γ[∆i]⇒ α

Γ[(∆1,∆2)∧]⇒ γ
(c∧)

Γ[(∆,∆)∧]⇒ α

Γ[∆]⇒ γ

DFNL∗ admits the empty formula structure λ. Notice that λ is the unit
for ( , ) but not for ( , )∧. By adding the constant 1 and (L1l), (L1r), (R1), we
obtain DFNL1. As above, we can also add any set S, of structural rules (a),
(e), (i), (c) (for ( , )), which yields logics DFNLS , DFNL∗S and DFNL1S . Again,
logics with (a) are denoted by DFLS , DFL∗S and DFL1S .

Formula structures (λ,∆)∧ and (∆, λ)∧ can be introduced by (i∧); in general,
they are not equal to ∆. Nonetheless, one may ignore them in any system
DFNL∗S . If S does not contain (i), then these structures cannot appear in any
proof tree (also involving (CUT)) of a sequent not containing them. If S contains
(i), then they can appear in such proofs (λ can be eliminated, using (i)), but we
assume that λ is the unit for both ( , ) and ( , )∧; so (λ,∆)∧ = (∆, λ)∧ = ∆.

[18] proves that DFL1 without (CUT) is complete with respect to (finite)
residuated distributive lattices, which yields an algebraic proof of the cut-
elimination theorem ([18] employs quasi-embeddings, used earlier for other sub-
structural logics in [31, 2, 12]). In a similar way (or by standard, syntactic ar-
guments), one can prove the cut-elimination theorem for all systems DFNL1S ,
DFNL∗S , DFNLS . All nonassociative logics DFNL1S , DFNL∗S , DFNLS are de-
cidable; each of them possesses the finite embeddability property, which yields
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the decidability of the correspondning consequence relation (with finitely many
assumptions) [9, 7, 15]. [18] shows the finite model property of DFL1, DFL1e,
DFL1i, DFL1ei, hence these logics are decidable. This yields the decidability
of their 1-free fragments; similar methods bring the decidability of DFL, DFLe,
DFLi, DFLei. With (i) all DFLS are decidable; this problem is open for versions
with (c) (but without (i)).

Theorem 1 remains true for DFNL∗S versus DFNLS with no essential changes
in definitions and proofs (the new structural rules and (L∧D) cause no prob-
lems). NS and PS are defined by Table 1, and NS((Γ,∆)∧) = (NS(Γ), NS(∆))∧.
Warning: `∗ and ` denote here the provability in DFNL∗S and DFNLS , respec-
tively. In the analogue of Theorem 1, we assume that no substructure of Γ is
represented as (λ,∆)∧ or (∆, λ)∧.

Theorem 2 holds for associative systems. Since we do not represent formula
structures as sequences, auxiliary axioms (a.1), (a.2), used in the proof, must
be appropriately modified; the details are left to the reader.

The results of Section 3 remain true, but they bring nothing new, since the
multiplicative fragment of DFNL∗S (resp. DFNLS) equals NL∗S (resp. NLS).
This also holds for the fragments restricted to only negative occurrences of ∧
and only positive occurrences of ∨.

Now we consider logics with unary modalities ♦,�↓, treated as multiplicative
operators. The corresponding sequent systems admit one new unary structural
operation, traditionally symbolized by 〈 〉. The introduction rules for ♦,�↓ are
as follows.

(L♦)
Γ[〈α〉]⇒ β

Γ[♦α]⇒ β
(R♦)

Γ⇒ α

〈Γ〉 ⇒ ♦α

(L�↓)
Γ[α]⇒ β

Γ[〈�↓α〉]⇒ β
(R�↓)

〈Γ〉 ⇒ β

Γ⇒ �↓β

NL with ♦,�↓ and the above rules is denoted by NL♦, and a similar notation
is used for other systems, e.g. FNL♦∗ is an analogous extension of FNL∗, FNL♦1

of FNL1, FL♦1 of FL1, and so on. These logics are special instances of systems
of Full Generalized Lambek Calculus (FGL); see [7].

The cut-elimination theorem holds for systems of this kind, also with struc-
tural rules (a), (e), (i), (c); [26] provides some proofs. This remains true for
these logics enriched with special modal rules:

(r.Ks)
Γ[(〈∆1〉, 〈∆2〉)]⇒ γ

Γ[〈(∆1,∆2)〉]⇒ γ
,

(r.T)
Γ[〈∆〉]⇒ γ

Γ[∆]⇒ γ
(r.4)

Γ[〈∆〉]⇒ γ

Γ[〈〈∆〉〉]⇒ γ
.

In systems with (CUT), these rules are equivalent to modal axioms:

(Ks) ♦(α · β)⇒ (♦α) · (♦β), (T.) α⇒ ♦α, (4.) ♦♦α⇒ ♦α.
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(Ks) is deductively equivalent to �↓(α\β) ⇒ �↓α\�↓β, the latter resembling
the axiom (K) of classical modal logics. Without (c) all modal substructural log-
ics of this kind are decidable. FL♦1c and FL♦c are undecidable, as conservative
extensions of FL1c and FLc, respectively.

NL♦ is complete with respect to residuated groupoids with unary operations
♦,�↓, satisfying the unary residuation law : ♦a ≤ b iff a ≤ �↓b, for all elements
a, b. Accordingly, �↓ is the right residual of ♦. Analogous completeness theo-
rems hold for other logics of this kind with respect to the appropriate classes of
algebras with ♦,�↓.

Substructural logics with ♦,�↓ are interesting for many reasons. Unary
residuated pairs represent, in a sense, the basic species of residuation; up to
the direction of order they amount to Galois connections. They were applied
in type grammars in order to refine typing of natural language expressions; see
[26, 30, 29]. Let us give one simple example. The initial types ‘he’: np, ‘her’:
np, ‘likes’: (np\s)/np yield ‘he likes her’: s on the basis of NL. Proper nouns
inhabit a subtype of np. Since ♦�↓α ⇒ α is provable in NL♦, one can define
pn = ♦�↓np. Then, adjectives can be typed pn/pn, which yields ‘he likes poor
Jane’: s, but ‘he likes poor her’: s cannot be derived, in accordance with the
English grammar.

We extend the translations NS , PS for the language with ♦,�↓, by setting:

PS(Oα) = OPS(α), NS(Oα) = ONS(α), for O ∈ {♦,�↓}.

Observe that sequents in FNL♦∗S can contain substructures 〈λ〉. All explicit
occurrences of λ in nonempty formula structures are of this form. In opposition
to the situation for DFNL∗S , these substructures can appear in proof trees of
sequents not containing them. For instance, (R�↓) infers⇒ �↓α from 〈λ〉 ⇒ α.
〈λ〉 can be introduced by (R♦) and (i).

A formula structure Γ is said to be λ−free, if Γ 6= λ and Γ contains no
substructure 〈λ〉. For any structure Γ, NS(Γ) is obtained by replacing each
formula α occurring in Γ (as an atomic substructure) by NS(α).

The results of Section 2 can be extended for logics with ♦,�↓. In the proofs
of Lemma 1 and Lemma 2, we use the monotonicity (hence also extensionality)
of ♦ and �↓ in these logics.

For S not containing (i), the claim (I) of Theorem 1 holds for all sequents
Γ⇒ γ such that Γ is λ−free. It is essential that in proof trees of these sequents,
only λ−free structures appear in antecedents except for the empty antecedents
(handled as in Section 2) and the subproofs of sequents⇒ α (not essential in the
proof of (I)). The proof follows the one in Section 2; the ‘only if’ part involves
new cases, corresponding to the introduction rules for ♦,�↓.

We consider (R�↓). The premise is 〈Γ〉 ⇒ β, and the conclusion is Γ⇒ �↓β.
By the induction hypothesis, 〈N(Γ)〉 ⇒ P (β) is provable in FNL♦S , hence
N(Γ)⇒ �↓P (β) is provable in FNL♦S and �↓P (β) = P (�↓β). The remaining
rules are left to the reader.

For S containing (i), we need an auxiliary notion. A pseudo-substitution θ
is defined as follows: θ(Γ) replaces each explicit occurrence of λ in Γ by q\q,
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where q is a fixed variable (q may occur in the sequents under consideration).
As above, Theorem 1 remains true for λ−free Γ (in both (I) and (II)). It is
easier to prove the following, stronger version.

Theorem 4. Let S contain (i). (I) For any sequent Γ ⇒ γ such that Γ 6= λ,
Γ ⇒ γ is provable in FNL♦∗S if and only if NS(θ(Γ)) ⇒ PS(γ) is provable in
FNL♦S. (II) For any formula γ, if γ is provable in FNL♦∗S, then for any λ−free
Γ, Γ⇒ PS(γ) is provable in FNL♦S.

Proof. The proof is similar to that of Theorem 1. The ‘if’ part of (I) follows from
the analogue of Lemma 2, the equality NS(q\q) = q\q, and the provability of
λ⇒ q\q in FNL♦∗S . (II) and the ‘only if’ part of (I) are proved by simultaneous
induction on cut-free proofs in FNL♦∗S (precisely: on the number of sequents
appearing in the proof tree). Most arguments are entirely similar, and we do
not repeat them. We only consider two new cases.

The proof of (I): (R♦) with the premise ⇒ α and the conclusion 〈λ〉 ⇒ ♦α.
By the induction hypothesis, applied to (II), q\q ⇒ P (α) is provable in FNL♦S ,
hence 〈q\q〉 ⇒ ♦P (α) is provable in FNL♦S . So N(θ(〈λ〉))⇒ P (♦α) is provable
in FNL♦S .

The proof of (II): (R�↓) with the premise 〈λ〉 ⇒ β and the conclusion
⇒ �↓β. By the induction hypothesis, applied to (I), 〈q\q〉 ⇒ P (β) is provable in
FNL♦S , hence q\q ⇒ P (�↓β) is provable in FNL♦S . Let Γ be λ−free. FNL♦S

proves Γ⇒ q\q, by (Id), (i), (L\), hence also Γ⇒ P (�↓β), by (CUT).

These results can also be proved for DFNL♦∗S versus DFNL♦S ; λ−free for-
mula structures are required to contain neither 〈λ〉, nor structures of the form
(λ,∆)∧, (∆, λ)∧. All nonassociative logics DFNL♦1S , DFNL♦∗S . DFNL♦S are
decidable [7]. We leave it for further research how to formulate and to prove
them for logics with special modal rules (axioms). One faces new difficulties,
especially for logics without (i). For instance, (r.KS) and (r.T) can eliminate
〈λ〉, hence Γ⇒ γ, where Γ is λ−free, can be inferred from sequents with 〈λ〉.

Without (i), the provability in FNL♦∗S cannot be fully reduced to the prov-
ability in FNL♦S . �↓α is provable if and only if 〈λ〉 ⇒ α is provable, but the
latter is not expressible in FNL♦S . With (i), using Theorem 4.(I), we obtain
the conditions:

(Pr.5) `∗ �↓α iff ` 〈q\q〉 ⇒ P (α),

(Pr.6) 6`∗ ♦α.

Kuznetsov’s reduction does not work for FL♦1S , if (i) is not in S. (1, 〈p〉)⇒
♦p is provable, by (Id), (R♦), (L1l), but (q\q, 〈((q\q) · p) · (q\q)〉)⇒ ♦(((q\q) ·
p) · (q\q)) is not provable.

The results of Section 3 can be extended for multiplicative fragments of
FNL♦∗S , FNL♦S , if S does not contain (c). For unary operators O, one defines
I(Oα) = O(I(α)), where O(U) = {Oα : α ∈ U}.
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5 Applications

We discuss two applications of the translations N , P . First, we show that,
essentially, the (phrase) languages generated by type grammars based on the
logic L∗, allowing empty antecedents, are also generated by type grammars
based on the subsystem L, not allowing empty antecedents.

We assume that L∗ and L are formalized in the same language and satisfy
(N-P): for any sequent Γ⇒ γ such that Γ 6= λ and all atomic substructures of Γ
are formulae of the language, Γ⇒ γ is provable in L∗ if and only if N(Γ)⇒ P (γ)
is provable in L. N,P are some fixed translations within this formal language.
We assume N(p) = p, for any variable p.

Proposition 1. For any L∗−grammar G, there exists an L−grammar G′ such
that LP (G′) = LP (G)− {λ} and L(G′) = L(G)− {ε}.

Proof. Let G = (ΣG, IG, δG). We define G′ by: ΣG′ = ΣG, δG′ = P (δG),
IG′(a) = {N(α) : α ∈ IG(a)}. Since L does not admit λ, then λ 6∈ LP (G′). By
induction on the size of X, one proves: for any X ∈ ΣP

G, IG′(X) = {N(Γ) : Γ ∈
IG(X)}. This yields: X ∈ LP (G′) iff there exists ∆ ∈ IG′(X) such that ∆⇒ δG′

is provable in L iff there exists Γ ∈ IG(X) such that N(Γ)⇒ P (δG) is provable
in L iff there exists Γ ∈ IG(X) such that Γ⇒ δG is provable in L∗ iff X ∈ LP (G).
So LP (G′) = LP (G)− {λ}, and consequently, L(G′) = L(G)− {ε}.

We additionally assume that no variable in provable in L∗. For extensions
of FNL∗, this requirement is equivalent to the consistency of L∗. Recall that a
sequent system is consistent, if not all sequents are provable.

Corollary 2. For any L∗−grammar G such that δG is a variable, there exists
an L−grammar G′ such that LP (G′) = LP (G) and L(G′) = L(G).

Proof. This follows from Proposition 1 and the unprovability of ⇒ sG (hence
λ 6∈ LP (G)).

These results (together with those from Sections 2, 3 and 4) show that the
generative capacity of type logics admitting λ is not essentially greater than
that of type logics without λ, both for phrase languages and string languages.

Theorem 3 implies analogous consequences for type grammars without ad-
ditives. Now IG′(a) =

⋃
{N ′(α) : α ∈ IG(a)}. If δG is a variable, then

P ′(δG) = {δG}, which yields Corollary 2, for δG′ = δG . If δG is compound, then
P ′(δG) may contain several types, say, δ1, . . . , δn. Let G′i be defined as G′ except
that δi is the designated type. Clearly LP (G)− {λ} is the union of all LP (G′i),
for i = 1, . . . , n, and similarly for string languages. All basic families of for-
mal languages, e.g. regular languages, context-free languages, context-sensitive
languages, r.e. languages, are closed under finite unions.

We omit a detailed discussion of the generative capacity of the particular
classes of type grammars; the reader is referred to [29, 4, 9]. Let us only note
that AB-grammars, L-grammars, NL-grammars generate the ε−free context-
free languages, FL-grammars generate a proper superclass of ε−free context-free
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languages [17], but DFNL-grammars remain context-free [9]. [23, 24] prove the
context-freeness of type grammars based on some modal extensions of NL and
DFNL.

The second application concerns the computational complexity of substruc-
tural logics. Horčik and Terui [16] prove the following, general theorem.

(HT) Every consistent substructural logic, possessing the disjunction property
(DP), is PSPACE-hard.

By a substructural logic one means here an extension of FL1 by additional
axioms and rules (possibly in a richer language, e.g. with 0, ⊥, >; one can also
add unary operators and others). (DP) means: if α ∨ β is provable, then α is
provable or β is provable.

[8] proves the following, stronger theorem: every logic L such that FL⊆ L ⊆
L′, for some consistent substructural logic L′, possessing (DP), is PSPACE-
hard. Here ⊆ denotes the inclusion between the sets of provable sequents of the
form α ⇒ β or ⇒ α. The reader is referred to [16, 8] for a discussion of the
significance of these results. For some particular logics, the PSPACE-hardness
(PSPACE-completeness) was proved earlier, e.g. IL (intuitionistic logic), FL1,
MALL ((DP) holds for each of them). By the theorem from [8], FLS and DFLS

are PSPACE-hard: they extend FL and are contained in IL (IL can be identified
with FL1⊥eic with 0 = ⊥). This cannot be inferred from (HT). See [8] for other
examples.

Here we further generalize this theorem towards nonassociative logics. By
(a ↓) we denote the top-down direction of (a) (in algebras, this corresponds to
right-associativity: a · (b · c) ≤ (a · b) · c).

Proposition 2. Every logic L such that FNL(a↓) ⊆ L ⊆ L′, for some consistent
substructural logic L′, possessing (DP), is PSPACE-hard.

By symmetry, (a↓) can be replaced by (a↑), i.e. the bottom-up direction of
(a). With (e) each of them yields (a).

To outline the proof we must recall some points of the proofs of (HT) and
the version from [8].

[16] reduces the validity problem for closed quantified boolean formulae
(QBFs) to the provability problem in the logic L, fulfilling the assumptions
of (HT). A closed QBF has the form Qnxn . . . Q1x1ϕ0, where Qi ∈ {∀,∃}
and ϕ0 is a boolean formula in DNF, whose variables are x1, . . . , xn. Let
ϕk = Qkxk . . . Q1x1ϕ0, for k = 0, . . . , n. The formula ϕk is encoded by a
formula αk of L.

We recall the encoding with minor changes of notation. One fixes different
variables pk, p̄k, qk, for k = 1, . . . , n. Let ϕ0 = ψ1 ∨ · · · ∨ ψm, where each ψj is
a finite conjunction of literals. One encodes ψj by βj = δ1 · δ2 · · · δn, where: (1)
δi = pi if ψj contains the literal xi, (2) δi = p̄i if ψj contains the literal ¬xi, (3)
δi = pi ∨ p̄i otherwise. One defines α0 = β1 ∨ · · · ∨ βm. For k = 1, . . . , n, one
defines: (1) αk = (pk ∨ p̄k)\αk−1 if Qk = ∀, (2) αk = (pk\qk ∨ p̄k\qk)/(αk−1\qk)
if Qk = ∃.
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For k = 0, . . . , n, ek denotes a partial valuation which assigns truth values to
xk+1, . . . , xn; so en is the empty valuation. One represents ek by the sequence
εk = (rk+1, . . . , rn), where: (1) ri = pi if ek(xi) = 1, (2) ri = p̄i if ek(xi) = 0; so
εn is the empty sequence. By set(εk) we denote the set of variables occurring in
εk. Two crucial lemmas in [16] can be summarized as follows (in (iii) ` denotes
the provability from assumptions).

(T1) For any k = 0, 1, . . . , n, the following conditions are equivalent: (i) ek
satisfies ϕk, (ii) εk ⇒ αk is provable in L, (iii) set(εk) ` αk in L.

As a consequence, ϕ is valid if and only if αn is provable in L, which yields
the desired reduction. (T1) is proved by simultaneous induction on k. The im-
plication (ii)⇒(iii) is obvious, so the nontrivial steps are (i)⇒(ii) and (iii)⇒(i).
For k = 0, (iii)⇒(i) employs Lemma A: in any nontrivial residuated lattice, 1
is not a minimal element. (DP) is used to prove the inductive step (iii)⇒(i) for
Qk = ∃. In fact, one uses Lemma B: if U is a set of variables and U ` α ∨ β in
L, then U ` α or U ` β in L (this follows from (DP)).

We have no space to recall more details of the proof. Already from the above
it can be seen that empty antecedents and models with 1 play an essential role.
Also the proof of the inductive step (iii)⇒(i) employs the law β/(γ\γ) ⇒ β,
provable in FL∗, not in FL. Furthermore, (DP) lacks sense for logics not allowing
empty antecedents. This proof cannot directly be adapted for logics like FL,
DFL etc.

[8] observes that the proof from [16] yields a stronger result: every logic L
such that FL1 ⊆ L ⊆ L′, for some consistent substructural logic L′, possessing
(DP), is PSPACE-hard. For, if ϕ is valid, then αn is provable in FL1, hence in
L; if αn is provable in L, then αn is provable in L′, hence ϕ is valid. Therefore,
ϕ is valid if and only if αn is provable in L.

[8] replaces FL1 by FL. We recall some main points. First, ϕ is replaced
by χ, which is obtained from ϕ by adding the literal xn+1 to every ψj . All
valuations ek are supposed to assign 1 to xn+1; so en is defined for xn+1 only
and assigns 1 to it. Clearly ϕ is valid if and only if en satisfies χ. We encode χk

by αk, as above (but now we have one new variable pn+1; we do not use p̄n+1).
(T1) entails (T2): ϕ is valid if and only if pn+1 ⇒ αn is provable in L′. In

particular, (T2) holds for L′ = FL1, and FL1 can be replaced by FL∗, since αn

does not contain 1. One also shows: P (αk) = αk, for k = 0, . . . , n; so pn+1 ⇒ αn

is stable in FL. The proof of this equality uses the unprovability of αk, for any
k ≤ n.

By Corollary 1 and the above, ϕ is valid if and only if pn+1 ⇒ αn is provable
in FL. This equivalence holds for both FL and L′, so it holds for L as well.

The proof does not work for nonassociative logics. A closer examination
shows that (a) is essential precisely in the inductive step for (i)⇒(ii), with Qk =
∃, in the proof of (T1). Let us recall the argument. Assume that ek satisfies ϕk.
Then, ek can be extended to ek−1, satisfying ϕk−1. Assume ek−1(xk) = 1. By
the induction hypothesis, pk, εk ⇒ αk−1 is provable. Hence pk, εk, αk−1\qk ⇒ qk
is provable, by (Id), (L\), which yields εk, αk−1\qk ⇒ pk\qk, by (R\) (associa-
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tivity). By (R∨), we get εk, αk−1\qk ⇒ pk\qk ∨ p̄k\qk, hence εk ⇒ αk, by (R/).
For ek−1(xk) = 0, the argument is similar.

We can reconstruct the encoding and carry out all other steps of the proof
in nonassociative logics: we replace sequences of formulae by formula structures
with parentheses associated to the right, e.g. (p1, p2, p3) by (p1, (p2, p3)), and
similarly for products of several formulae (in βj). Lemma A holds for unital
lattice-ordered residuated groupoids, and Lemma B for extensions of FNL1.
The argument in the preceding paragraph really employs (a↓). Indeed, from
((pk, εk), αk−1\qk) ⇒ qk we infer (pk, (εk, αk−1\qk)) ⇒ qk, then apply (R\),
(R∨), (R/). This yields Proposition 2. As shown in [25], (a↓) is derivable in
Residuated Basic Logic (RBL), being a conservative extension of Basic Propo-
sitional Logic, hence RBL is PSPACE-hard.

We can replace right-associativity by mixed associativity: a·(b�c) ≤ (a·b)�c.
Here · and � are two products; \, / are the residual operations for the former,
and \�, /� for the latter. FNL2 denotes the variant of FNL admitting new
connectives �, \�, /� and the new structural operator ( , )�. The rule of mixed
associativity is the following:

(ma)
Γ[((∆1,∆2),∆3)�]⇒ γ

Γ[(∆1, (∆2,∆3)�)]⇒ γ
.

Algebraic models are lattice-ordered double residuated groupoids: the binary
residuation law:

a · b ≤ c iff b ≤ a\c iff a ≤ c/b

holds for both ·, \, / and �, \�, /�. In unital algebras, 1 is the unit for · and �.
The encoding is modified for Qk = ∃: αk = (pk\qk ∨ p̄k\qk)/�(αk−1\�qk). The
proof, presented above, can be transformed into a proof of Proposition 2 with
FNL2

(ma) in the place of FNL(a↓).
Associativity can be entirely avoided in a different way. One may encode

Qk = ∃ by: αk = pk\αk−1 ∨ p̄k\αk−1. Then, all arguments above remain
correct for nonassociative logics. Unfortunately, the encoding is not polynomial.
It becomes polynomial, if formulae are represented as directed acyclic graphs:
each (free) subformula occupies only one node of the graph (like in circuits).
Therefore, Proposition 2 is true for FNL in the place of FNL(a↓), with formulae
represented as dags. With the standard representation, we can only prove the
coNP-hardness (the validity of QBFs without ∃ can be reduced to the provability
in FNL∗, hence in FNL, as above).
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